Bedingter Wahrscheinlichkeitsrechner


Anleitung: Verwenden Sie diesen Rechner für bedingte Wahrscheinlichkeiten, um die bedingte Wahrscheinlichkeit \(\Pr(A | B)\) zu berechnen. Bitte geben Sie die Wahrscheinlichkeit \(\Pr(A \cap B)\) und \(\Pr(B)\) im folgenden Formular an:

Bitte geben Sie den Wert von \(\Pr(A \cap B)\) = an
Bitte geben Sie den Wert von \(\Pr(B)\) = an

Weitere Informationen zu diesem bedingten Wahrscheinlichkeitsrechner

Das Konzept der bedingten Wahrscheinlichkeit ist eine der wichtigsten Ideen in Wahrscheinlichkeit und Statistik. Und es ist eine ganz einfache Idee: Die bedingte Wahrscheinlichkeit eines Ereignisses \(A\) gegeben Ein Ereignis \(B\) ist die Wahrscheinlichkeit, dass \(A\) unter der Annahme auftritt, dass \(B\) ebenfalls auftritt.

Das heißt, wir beschränken den Probenraum auf Ausgaben, in denen \(B\) auftritt, und suchen nach der Wahrscheinlichkeit, dass \(A\) in diesem Teilmengen-Probenraum auftritt.

Wie lautet also die Formel für die bedingte Wahrscheinlichkeit?

In mathematischen Begriffen wird die bedingte Wahrscheinlichkeit \(\Pr(A|B)\) nach folgender Formel berechnet:

\[\Pr(A|B) = \displaystyle \frac{\Pr(A \cap B)}{\Pr(B)}\]

Der obige Ausdruck kann umgeschrieben werden und bietet auch eine Möglichkeit, die Wahrscheinlichkeit des Schnittpunkts zweier Ereignisse zu berechnen, wenn die bedingte Wahrscheinlichkeit bekannt ist:

\[ \Pr(A \cap B) = \Pr(A|B) \Pr(B) \]

Warum ist die bedingte Wahrscheinlichkeit wichtig?

Das Konzept der bedingten Wahrscheinlichkeit ist entscheidend, da es die Tatsache des realen Lebens darstellt, dass wir, wenn wir mehr Informationen über ein Ereignis kennen, unsere Vorstellung von der Wahrscheinlichkeit eines Ereignisses verfeinern können. Diese Idee, eine Wahrscheinlichkeit zu berechnen, vorausgesetzt, wir wissen, dass bestimmte sogar wahr sind, ist eine Darstellung der Funktionsweise unseres Gehirns und macht daher die Idee der bedingten Wahrscheinlichkeit sehr wichtig.

Auch das Konzept der bedingten Wahrscheinlichkeit und die Gesetz der Multiplikation spielen eine entscheidende Rolle für den Bau der Gesamtwahrscheinlichkeit Regel ebenso gut wie Satz von Bayes .

Einloggen

Sie haben noch kein Mitgliedskonto?
Anmelden

Passwort zurücksetzen

Anmelden
Einloggen

Anmelden

Anmelden
Einloggen