Dezil-rechner
Anweisungen: Dieser Dezilrechner berechnet ein von Ihnen angegebenes Dezil und zeigt schrittweise Berechnungen zur Durchführung der Arbeit für einen Beispieldatensatz, den Sie im folgenden Formular angeben:
Mehr über diesen dezilrechner
Das k-te Dezil (erstes, zweites bis neuntes Dezil) einer Verteilung entspricht einem Punkt mit der Eigenschaft, dass 10 % der Verteilung links vom ersten Dezil (\(D_1\)), 20 % der Verteilung links vom zweiten Dezil (\(D_2\)) usw. liegen, sodass 90 % der Verteilung links vom neunten Dezil (\(D_9\)) liegen
Wie berechnet man ein dezil?
Bei Stichprobendaten liegen uns nicht alle Werte der Grundgesamtheit vor, sodass die Berechnung der Dezile nur eine Näherung darstellt. Um genaue Dezile berechnen zu können, müssen wir die Parameter der Grundgesamtheit kennen.
Um ein Dezil für Stichprobendaten zu berechnen, müssen die Stichprobendaten zunächst in aufsteigender Reihenfolge sortiert werden. Anschließend Position des k-ten Dezils \(D_k\) wird mit der folgenden Formel berechnet:
\[ L_k = \frac{(n+1) k}{10} \]Dabei ist \(n\) die Stichprobengröße und \(k\) die entsprechende Reihenfolge des Dezils (\(k\) = 1, 2, ... oder 9).
• Wenn \(L_k\) eine Ganzzahl ist, dann ist das Dezil \(Q_k\) der Wert, der sich an der Position \(L_k\) der in aufsteigender Reihenfolge angeordneten Daten befindet.
• Wenn \(L_k\) KEINE Ganzzahl ist, müssen wir die beiden nächstgelegenen Ganzzahlpositionen \(L_{low}\) und \(L_{high}\) finden, damit \(L_{low} < L_k < L_{high}\) entsteht. Wenn beispielsweise \(L_P = 5.25\), dann \(L_{low} = 5\) und \(L_{high} = 6\).
Nachdem wir \(L_{low}\) und \(L_{high}\) gefunden haben, lokalisieren wir die Werte im aufsteigenden Array an den Positionen \(L_{low}\) und \(L_{high}\) und nennen sie \(D_{low}\) bzw. \(D_{high}\) und schätzen (interpolieren) das Dezil \(D_k\) wie folgt:
\[ D_k = D_{low} + (L_k -L_{low})\times(D_{high} - D_{low}) \]Dezilrechner in excel
Es gibt keine spezielle Excel-Formel zur Berechnung von Dezilen. Für das k-te Dezil können Sie die Formel "=DECILE(data, 0.10*k)" verwenden. Das Problem dieser Formel ist, dass sie nicht immer mit dem von Excel ausgegebenen Ergebnis übereinstimmt. Warum? Excel verwendet eine stark vereinfachte Interpolation, wenn die Perzentilposition keine exakte Ganzzahl ist.
Die obige Interpolationsformel ist präziser als die von Excel verwendete, dennoch ist die lineare Interpolation eine mögliche Annäherung.
Wenn Sie statt der Berechnung von Dezilen ein allgemeines Perzentil berechnen müssen, können Sie dies verwenden Perzentilrechner . Außerdem Quartilrechner kann direkt verwendet werden, wenn Sie speziell danach suchen.