calculateur de matrice d'identité


Instructions: Utilisez ce calculateur pour générer la matrice identité pour une taille nn donnée :.

Size of the matrix nn (Integer. Ex: 2, 3, 4, etc.)

En savoir plus sur ce calculateur de matrice d'identité

La matrice identité II est une matrice très importante qui a une propriété très importante : si nous multiplions II par n'importe quelle matrice AA (de taille appropriée), la matrice AA obtient inchangé par la multiplication.

En d'autres termes, la propriété qui définit la matrice identité est

AI=IA=AA I = I A = A

Or, on parle normalement de "l'" identité, alors qu'en fait il existe une matrice identité pour chaque entier n2n \ge 2. Ainsi, étant donné une taille nn, nous pouvons construire la matrice d'identité pour cette taille spécifique.

Et c'est ce que fait cette calculatrice : vous fournissez une taille nn et l'identité correspondante vous est livrée.

Principales propriétés de la matrice d'identité

  1. La matrice d'identité est une Matrice Carrée , dans le sens où il a le même nombre de lignes et de colonnes
  2. La matrice identité n'a de valeurs différentes de zéro qu'à sa diagonale
  3. La diagonale ne contient que des 1
  4. Multiplier la matrice identité I par une autre autre matrice A (où la multiplication peut être effectuée) ne change pas sa valeur. C'est ce qu'on appelle la propriété de la matrice identité pour les multiplication de matrices
Matrice d'identité

Comment trouver une matrice d'identité ?

Cette calculatrice de matrice d'identité avec étapes peut vous aider. Alors, quelle est la valeur de la matrice d'identité, ou comment la calcule-t-on ? Nous devons d'abord spécifier la taille nn de l'identité.

Étape 1: Spécifiez la taille souhaitée n de la matrice d'identité

Étape 2: Ensuite, la matrice identité est la matrice avec nn lignes et nn colonnes, qui est définie comme

Aij=δij A_{i j} = \delta_{ij}

ce qui signifie que Aij=1A_{i j} = 1 pour quand i=j i = j et Aij=0A_{i j} = 0 pour quand ij i \ne j.

Étape 3: En termes simples, c'est juste une façon fantaisiste de dire que la matrice d'identité se compose de 1 dans la diagonale et de 0 à l'extérieur de la diagonale.

Matrice d'identité Exemples

La meilleure façon de comprendre le Matrice d'identité est de voir un exemple, où vous pouvez comprendre comment cela fonctionne.

Qu'est-ce qu'une matrice d'identité. Voici un exemple

Par exemple, lorsque n=2n=2, la matrice d'identité est cette matrice 2x2 telle qu'elle a des 1 dans la diagonale et des 0 à l'extérieur de la diagonale. Cela ressemble à :

[1001] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

ou lorsque n=3n=3, la matrice d'identité est cette matrice 3x3 telle qu'elle a des 1 dans la diagonale et des 0 à l'extérieur de la diagonale, qui ressemble à :

[100010001] \begin{bmatrix} 1 & 0 &0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

Notation pour l'identité

Certaines personnes aimeront appeler I2I_2 ou I2x2I_{2x2} à l'identité 2x2. Mais vous pouvez l'appeler simplement II, sous la compréhension commune qu'il y a une taille sans ambiguïté associée à cette identité.

Il est intéressant de noter que la matrice d'identité n'a aucune propriété spéciale pour le somme de matrices ou pour le soustraction de matrices , comme pour la multiplication.

s'identifier

Vous n'avez pas de compte de membre?
s'inscrire

réinitialiser le mot de passe

Retour à
s'identifier

s'inscrire

Retour à
s'identifier