Aproximación normal para la distribución binomial


Instrucciones: Calcule probabilidades binomiales usando Aproximación Normal. Escriba la proporción de población de éxito p, y el tamaño de muestra n, y proporcione detalles sobre el evento para el que desea calcular la probabilidad (observe que los números que definen los eventos deben ser enteros. Además, si el evento contiene el signo "<", asegúrese de reemplazarlo por el evento equivalente usando \le. Por ejemplo, si necesita Pr(X<6) \Pr(X < 6), calcule en su lugar Pr(X5) \Pr(X \le 5)):

Proporción de población (p) =
Tamaño de muestra (n) =
Dos-Colas:
≤ X ≤
Cola Izquierda:
X ≤
Cola Derecha:
X ≥

Calculadora de probabilidad binomial usando aproximación normal

Para una variable aleatoria XX con una distribución binomial con parámetros pp y nn, la media poblacional y la varianza poblacional se calculan de la siguiente manera:

μ=np \mu = n \cdot p σ=np(1p) \sigma = \sqrt{n \cdot p \cdot (1 - p)}

Cuando el tamaño de la muestra nn es lo suficientemente grande y / o cuando pp está cerca de 12\frac{1}{2}, entonces XX tiene una distribución aproximadamente normal. Pero para aproximar una distribución Binomial (una distribución discreta) con una distribución normal (una distribución continua), un llamado corrección de continuidad necesita ser realizado. Específicamente, un evento binomial de la forma

Pr(aXb) \Pr(a \le X \le b)

será aproximado por un evento normal como

Pr(a12XNormalb+12) \Pr(a - \frac{1}{2} \le X_{Normal} \le b + \frac{1}{2})

Usando lo anterior calculadora de curva de distribución binomial , podemos aproximar las probabilidades de la forma Pr(aXb)\Pr(a \le X \le b), de la forma Pr(Xb)\Pr(X \le b) o de la forma Pr(Xa)\Pr(X \ge a). Esto puede resultar práctico cuando se intenta realizar cálculos manuales que involucren intervalos grandes, lo que implicaría calcular muchas probabilidades individuales. Para un exacto Calculadora de probabilidad binomial, consulte esta , donde la probabilidad es exacta, normalmente no aproximada.

Otras aproximaciones normales

Existe una aproximación menos utilizada que es la aproximación normal a la distribución de Poisson , que utiliza una lógica similar a la de la distribución de Poisson.

iniciar sesión

No tiene una membresia?
Regístrate

restablecer la contraseña

Regístrate