Importancia del coeficiente de correlación


Instrucciones: Ingrese la correlación de la muestra rr, el tamaño de la muestra nn y el nivel de significancia α\alpha, y la calculadora probará si el coeficiente de correlación es significativamente diferente de cero utilizando el enfoque de correlación crítica.

Escriba la correlación muestral (rr):
Escriba el tamaño de la muestra (nn):
Escriba el nivel de significancia (α)\alpha):
Seleccione el tipo de cola:

Más sobre la importancia del coeficiente de correlación

La correlación muestral rr es una estadística que estima la correlación poblacional, ρ\rho. Una prueba estadística típica consiste en evaluar si el coeficiente de correlación es significativamente diferente de cero.

Existen al menos dos métodos para evaluar la importancia del coeficiente de correlación muestral: uno de ellos se basa en la correlación crítica. Dicho enfoque se basa en la idea de que si la correlación muestral rr es lo suficientemente grande, entonces la correlación poblacional ρ\rho es diferente de cero.

¿Qué tan grande debe ser la correlación muestral rr para tener derecho a afirmar que la correlación poblacional ρ\rho es diferente de cero? Ahí es donde usamos la correlación crítica rcr_c.

El valor de rcr_c se utiliza para evaluar la importancia del coeficiente de correlación muestral rr. Estos valores de correlación críticos generalmente se encuentran en tablas de correlación específicas.

Comparando correlaciones

Un cálculo relacionado que puede interesarle es evaluar la importancia de la diferencia entre dos correlaciones, para lo cual puede utilizar esta calculadora .

iniciar sesión

No tiene una membresia?
Regístrate

restablecer la contraseña

Regístrate