Calcolatrice di formule discriminanti


Istruzioni: Usa questa calcolatrice per trovare il discriminante di un'equazione quadratica, mostrando tutti i passaggi. Digita un'equazione quadratica valida nella casella sottostante.

Inserisci un'equazione quadratica valida (Es: 2x^2 + 3x - 2 = 0, ecc.)

Formula di discriminazione

Questa calcolatrice utilizzerà la formula discriminante che mostra tutti i passaggi per un'equazione quadratica che fornisci.

Devi fornire un'equazione quadratica valida, qualcosa come 2x²+x-1=0, che viene già semplificata, oppure puoi fornire qualcosa che sia un'espressione quadratica valida, ma necessita di ulteriore semplificazione come 2x²+3x-1 = 3/4x - 4/5.

Una volta fornita un'equazione quadratica valida, tutto ciò che devi fare è fare clic sul pulsante "Calcola" e ti verranno forniti tutti i passaggi del calcolo.

Per il calcolo del discriminante verrà utilizzata l'equazione quadratica semplificata nella forma ax² + bx + c = 0, che indicherà subito la natura delle radici: due radici reali, una radice reale o due radici complesse.

Formula Di Discriminazione

La formula discriminante

Come trovare il discriminante di un'equazione quadratica ? Una volta che hai l'equazione quadratica nella forma ax² + bx + c = 0, puoi applicare direttamente la formula discriminante:

Δ=b24ac\displaystyle \Delta = b^2 - 4ac

Significato discriminante

Una volta applicata la formula precedente e ottenuto un valore Δ\Delta per il discriminante, qual è il suo significato?

  • Passo 1: Se Δ>0\Delta > 0: allora l'equazione quadratica ha due diverse radici reali
  • Passo 2: Se Δ=0\Delta = 0: allora l'equazione quadratica ha una sola radice reale
  • Passo 3: Se Δ<0\Delta < 0: Allora l'equazione quadratica ha due radici complesse coniugate

Qual è il significato di due radici complesse coniugate ? Graficamente, è semplicemente una parabola che non attraversa l'asse x.

D'altra parte, due diverse radici reali implicano graficamente che la parabola attraversi l'asse x in due punti. Un discriminante uguale a zero indica che la parabola è tangente all'asse x.

Perché dovrebbe preoccuparsi del discriminante?

Il discriminante fornisce una forma semplice per valutare i tipi di radice di un'equazione quadratica, senza risolvere effettivamente l'equazione.

Naturalmente, possiamo vedere che il discriminante appare letteralmente in formula quadratica , quindi è ovviamente legato al processo di calcolo radici quadratiche .

Calcolatrice Di Formule Discriminanti

Esempio: calcolo discriminante

Trova il discriminante della seguente equazione: x2+3x+10=0x^2+ 3x + 10 = 0

Soluzione: Dobbiamo risolvere la seguente equazione quadratica data x2+3x+10=0\displaystyle x^2+3x+10=0.

Per un'equazione quadratica della forma ax2+bx+c=0a x^2 + bx + c = 0, il discriminante viene calcolato utilizzando la seguente formula:

Δ=b24ac\Delta = \displaystyle b^2-4ac

In questo caso, abbiamo che l'equazione che dobbiamo risolvere è x2+3x+10=0\displaystyle x^2+3x+10 = 0, il che implica che i coefficienti corrispondenti sono:

a=1a = 1 b=3b = 3 c=10c = 10

Inserendo questi valori nella formula otteniamo:

Δ=b24ac=(3)24(1)(10)=31\Delta = b^2-4ac = \displaystyle \left( 3\right)^2 - 4 \cdot \left(1\right)\cdot \left(10\right) = -31

Pertanto, il discriminante per l'equazione quadratica data è Δ=31<0\Delta = \displaystyle -31 < 0, che è negativo, e ciò indica che l'equazione data x2+3x+10=0\displaystyle x^2+3x+10=0 ha due diverse radici complesse coniugate.

Questo conclude il calcolo del determinante.

Esempio: calcolo discriminante

Trova il discriminante della seguente equazione: 3x22x+4=03x^2 - 2x + 4 = 0

Soluzione: In questo caso, poiché l'equazione quadratica che dobbiamo risolvere è x2+3x+10=0\displaystyle x^2+3x+10 = 0, che è nella sua forma semplificata, i coefficienti corrispondenti sono:

a=3a = 3 b=2b = -2 c=4c = 4

Inserendo questi valori nella formula precedente troviamo che:

Δ=b24ac=(2)24(3)(4)=44\Delta = b^2-4ac = \displaystyle \left( -2\right)^2 - 4 \cdot \left(3\right)\cdot \left(4\right) = -44

Quindi, il discriminante per l'equazione quadratica data è Δ=44<0\Delta = \displaystyle -44 < 0, che è negativo. Pertanto, l'equazione data 3x22x+4=03x^2 - 2x + 4 = 0 ha due diverse radici complesse coniugate.

Questo conclude il calcolo.

Esempio: significato discriminante

Senza risolvere l'equazione 2x23x10=02x^2 - 3x - 10 = 0, indicare la natura delle sue radici.

Soluzione: In questo caso, dobbiamo risolvere è 2x23x+1=02x^2 - 3x + 1 = 0, quindi i coefficienti corrispondenti sono:

a=2a = 2 b=3b = -3 c=10c = -10

Inserendo questi valori nella formula del determinante troviamo che:

Δ=b24ac=(3)24(2)(10)=44\Delta = b^2-4ac = \displaystyle \left( -3\right)^2 - 4 \cdot \left(2\right)\cdot \left(-10\right) = -44

Quindi, il discriminante per l'equazione quadratica data è Δ=89>0\Delta = 89 > 0, che è positivo. Pertanto, senza risolvere l'equazione, sappiamo che l'equazione data 2x23x10=02x^2 - 3x - 10 = 0 ha due radici reali diverse.

Altre calcolatrici quadratiche

Trattare con funzioni quadratiche ed equazioni è molto comune in Algebra. Calcolo delle radici di equazioni quadratiche è strettamente legato a calcolare un discriminante e trovare il vertice .

Geometricamente, il discriminante indicherà il tipo di disposizione di una parabola che rappresenta la funzione quadratica e l'asse x.

Non hai un account di iscrizione?
Iscriviti

Resetta la password

Torna a
accesso

Iscriviti

Torna a
accesso