Wie gehe ich mit dem zentralen Grenzwertsatz um und hängt er mit der Normalverteilung zusammen?


\[f\left( x \right)=\frac{1}{\sqrt{2\pi {{\sigma }^{2}}}}\exp \left( -\frac{{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}} \right)\]

Manipulieren der Normalverteilung

\[\int\limits_{-\infty }^{\infty }{\frac{1}{\sqrt{2\pi {{\sigma }^{2}}}}\exp \left( -\frac{{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}} \right)dx}=1\]

\[\int\limits_{-\infty }^{\infty }{\frac{x}{\sqrt{2\pi {{\sigma }^{2}}}}\exp \left( -\frac{{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}} \right)dx}=\mu\]

and

\[\int\limits_{-\infty }^{\infty }{\frac{{{x}^{2}}}{\sqrt{2\pi {{\sigma }^{2}}}}\exp \left( -\frac{{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}} \right)dx}={{\mu }^{2}}+{{\sigma }^{2}}\]

Standardnormalverteilung und Z-Scores

\[Z=\frac{X-\mu }{\sigma }\]

\[Z=\frac{X-\mu }{\sigma}\]

\[X-72<75.5-72\]

\[\frac{X-72}{8}<\frac{75.5-72}{8}\]

Der zentrale Grenzwertsatz (CLT)

Dieses Tutorial wurde Ihnen mit freundlicher Genehmigung von zur Verfügung gestellt MyGeekyTutor.com

Einloggen

Sie haben noch kein Mitgliedskonto?
Anmelden

Passwort zurücksetzen

Anmelden
Einloggen

Anmelden

Anmelden
Einloggen