Significância do Coeficiente de Correlação


Instruções: Insira a correlação de amostra rr, tamanho de amostra nn e o nível de significância α\alpha, e o solucionador testará se o coeficiente de correlação é ou não significativamente diferente de zero usando a abordagem de correlação crítica.

Digite a correlação de amostra (rr):
Digite o tamanho da amostra (nn):
Digite o nível de significância (α)\alpha):
Select the type of tail:

Mais sobre a importância do coeficiente de correlação

A correlação da amostra rr é uma estatística que estima a correlação da população, ρ\rho. No teste estatístico típico consiste em avaliar se o coeficiente de correlação é ou não significativamente diferente de zero.

Existem pelo menos dois métodos para avaliar a significância do coeficiente de correlação da amostra: Um deles é baseado na correlação crítica. Tal abordagem é baseada na ideia de que se a correlação da amostra rr for grande o suficiente, então a correlação da população ρ\rho é diferente de zero.

Qual deve ser o tamanho da correlação da amostra rr para poder afirmar que a correlação da população ρ\rho é diferente de zero? É aqui que usamos a correlação crítica rcr_c.

O valor de rcr_c é usado para avaliar a significância do coeficiente de correlação da amostra rr. Esses valores de correlação críticos são geralmente encontrados em tabelas de correlação específicas.

Comparando correlações

Um cálculo relacionado no qual você pode estar interessado é avaliar a significância da diferença entre duas correlações, para o qual você pode usar esta calculadora .

Conecte-se

Não tem uma conta de membro?
inscrever-se

redefinir senha

De volta a
Conecte-se

inscrever-se

De volta a
Conecte-se