Basic Integrals | Rational Integrals | Trigonometric Integrals
1 .-)         xn,dx=xn+1n+1+C,n1\displaystyle \int x^n, dx = \frac{x^{n+1}}{n+1}+C, \qquad n \ne -1
2 .-)         dxx=lnx+C\displaystyle \int \frac{dx}{x}=\ln |x|+C
3 .-)         ax,dx=axlna+C\displaystyle \int a^x , dx=\frac{a^x}{\ln a}+C
4 .-)         tanx,dx=lnsecx+C\displaystyle \int \tan x, dx = \ln|\sec x|+C
5 .- )         cotx,dx=lnsinx+C\displaystyle \int \cot x, dx = \ln|sin x|+C
6 .- )         secx,dx=lnsecx+tanx+C\displaystyle \int \sec x, dx = \ln |\sec x+\tan x|+C
7 .- )         cscx,dx=lncscxcotx+C\displaystyle \int \csc x, dx = \ln |\csc x-\cot x|+C
8 .- )         dxx2a2=12alnxax+a+C, if x2>a2\displaystyle \int \frac{dx}{x^2-a^2}=\frac{1}{2a} \ln \left| \frac{x-a}{x+a}\right|+C, \text{ if } x^2>a^2
9 .- )         dxx2a2=12alnaxx+a+C, if a2>x2\displaystyle \int \frac{dx}{x^2-a^2}=\frac{1}{2a} \ln \left| \frac{a-x}{x+a}\right|+C, \text{ if } a^2>x^2
10 .- )         dxx2+a2=1aarctan(xa)+C\displaystyle \int \frac{dx}{x^2+a^2}=\frac{1}{a}\arctan\left(\frac{x}{a}\right)+C
11 .- )         dxa2x2=arctan(xa)+C\displaystyle \int \frac{dx}{\sqrt{a^2-x^2}}=\arctan \left(\frac{x}{a}\right)+C
12 .- )         dxx2±a2=lnx+x2±a2+C\displaystyle \int \frac{dx}{x^2 \pm a^2 }= \ln \left|x+\sqrt{x^2\pm a^2}\right|+C
13 .- )         dxx(a+bx)=1alnxa+bx+C\displaystyle \int \frac{dx}{x(a+bx)}=\frac{1}{a} \ln \left| \frac{x}{a+bx} \right|+C
14 .- )         dxx2(a+bx)=1ax+ba2lna+bxx+C\displaystyle \int \frac{dx}{x^2(a+bx)}= -\frac{1}{ax} +\frac{b}{a^2}\ln \left| \frac{a+bx}{x} \right|+C
15 .- )         dxx(a+bx)2=1a+bx1a2lna+bxx+C\displaystyle \int \frac{dx}{x(a+bx)^2}= \frac{1}{a+bx} - \frac{1}{a^2}\ln \left| \frac{a+bx}{x} \right|+C

Rational Integrals | go back

16 .- )         xa+bx,dx=2(3bx2a)(a+bx)315b2+C\displaystyle \int x \sqrt{a+bx}, dx = \frac{2(3bx-2a)\sqrt{(a+bx)^3} }{15b^2}+C
17 .- )         x,dxa+bx=2(bx2a)a+bx3b2+C\displaystyle \int \frac{x, dx}{\sqrt{a+bx} }=\frac{ 2(bx-2a)\sqrt{a+bx} }{3b^2}+C
18 .- )         x2a+bx,dx=2(15b2x212abx+8a2)(a+bx)3105b3+C\displaystyle \int x^2 \sqrt{a+bx}, dx = \frac{2(15b^2x^2-12abx+8a^2)\sqrt{(a+bx)^3} }{105b^3}+C
19 .- )         x2,dxa+bx=2(3b2x24abx+8a2)a+bx15b3+C\displaystyle \int \frac{x^2, dx}{\sqrt{a+bx} }=\frac{ 2(3b^2x^2-4abx+8a^2)\sqrt{a+bx} }{15b^3}+C
20 .- )         dxxa+bx=1aln(a+bxaa+bx+a)+C if a>0\displaystyle \int \frac{dx}{x\sqrt{a+bx}}=\frac{1}{\sqrt a} \ln\left( \frac{\sqrt{a+bx}-\sqrt a}{\sqrt{a+bx}+\sqrt a}\right) + C \qquad \text{ if } a>0
21 .- )         dxxa+bx=2aarctana+bxa+C if a<0\displaystyle \int \frac{dx}{x\sqrt{a+bx}}=\frac{2}{\sqrt{-a}} \arctan \sqrt{\frac{a+bx}{-a}} + C \qquad \text{ if } a<0
22 .- )         a+bxx,dx=2a+bx+dxxa+bx+C\displaystyle \int \frac{a+bx}{x}, dx = 2\sqrt{a+bx}+\int \frac{dx}{x\sqrt{a+bx}} + C
23 .- )         dxx2a+bx=a+bxaxb2adxxa+bx+C\displaystyle \int \frac{dx}{x^2\sqrt{a+bx}}=-\frac{\sqrt{a+bx}}{ax}-\frac{b}{2a}\int \frac{dx}{x\sqrt{a+bx}} + C
24 .- )         a2x2,dx=12(xa2x2+a2arctan(xa))+C\displaystyle \int \sqrt{a^2-x^2}, dx = \frac{1}{2}\left(x\sqrt{a^2-x^2}+a^2\arctan\left(\frac{x}{a}\right)\right) + C
25 .- )         xa2x2,dx=13(a2x2)3/2+C\displaystyle \int x\sqrt{a^2-x^2}, dx = -\frac{1}{3}(a^2-x^2)^{3/2} + C
26 .- )         x2a2x2,dx=x8(2x2a2)a2x2+a48arctan(xa)+C\displaystyle \int x^2 \sqrt{a^2-x^2}, dx = \frac{x}{8}(2x^2-a^2)\sqrt{a^2-x^2}+\frac{a^4}{8}\arctan\left(\frac{x}{a}\right) + C
27 .- )         x,dxa2x2=a2x2+C\displaystyle \int \frac{x, dx}{a^2-x^2} = -\sqrt{a^2-x^2} + C
28 .- )         x2,dxa2x2=x2a2x2+a22arctan(xa)+C\displaystyle \int \frac{x^2, dx}{a^2-x^2} = -\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\arctan\left(\frac{x}{a}\right) + C
29 .- )         (a2x2)3/2,dx=x8(5a22x2)a2x2+3a48arctan(xa)+C\displaystyle \int (a^2-x^2)^{3/2}, dx = \frac{x}{8}(5a^2-2x^2)\sqrt{a^2-x^2}+\frac{3a^4}{8}\arctan\left(\frac{x}{a}\right)+ C
30 .- )         dx(a2x2)3/2=xa2a2x2+C\displaystyle \int \frac{dx}{(a^2-x^2)^{3/2}} = \frac{x}{a^2\sqrt{a^2-x^2}} + C
31 .- )         x,dx(a2x2)3/2=1a2x2+C\displaystyle \int \frac{x, dx}{(a^2-x^2)^{3/2}} = \frac{1}{\sqrt{a^2-x^2}} + C
32 .- )         x2,dx(a2x2)3/2=xa2x2arctan(xa)+C\displaystyle \int \frac{x^2, dx}{(a^2-x^2)^{3/2}} = \frac{x}{\sqrt{a^2-x^2}}-\arctan\left( \frac{x}{a}\right) + C
33 .- )         dxxa2x2=1alnaa2x2x+C\displaystyle \int \frac{dx}{ x\sqrt{a^2-x^2} } = \frac{1}{a}\ln \left| \frac{a-\sqrt{a^2-x^2}}{x} \right| + C
34 .- )         dxx2a2x2=a2x2a2x+C\displaystyle \int \frac{dx}{x^2\sqrt{a^2-x^2}} = -\frac{\sqrt{a^2-x^2}}{a^2x} + C
35 .- )         dxx3a2x2=a2x22a2x2+12a3lnaa2x2x+C\displaystyle \int \frac{dx}{x^3\sqrt{a^2-x^2}}=-\frac{\sqrt{a^2-x^2}}{2a^2x^2}+\frac{1}{2a^3}\ln\left|\frac{a-\sqrt{a^2-x^2}}{x} \right| + C
36 .- )         a2x2x,dx=a2x2alna+a2x2x+C\displaystyle \int \frac{\sqrt{a^2-x^2}}{x}, dx = \sqrt{a^2-x^2}-a\ln \left| \frac{a+\sqrt{a^2-x^2}}{x} \right| + C
37 .- )         a2x2x2,dx=a2x2xarctan(xa)+C\displaystyle \int \frac{\sqrt{a^2-x^2}}{x^2}, dx =-\frac{\sqrt{a^2-x^2}}{x}-\arctan\left(\frac{x}{a}\right) + C
38 .- )         x2±a2,dx=12(xx2±a2±a2lnx+x2±a2)+C\displaystyle \int \sqrt{x^2 \pm a^2}, dx = \frac{1}{2}\left(x\sqrt{x^2 \pm a^2} \pm a^2\ln | x+\sqrt{x^2 \pm a^2} |\right) + C
39 .- )         xx2±a2,dx=13(x2±a2)3/2+C\displaystyle \int x\sqrt{x^2 \pm a^2}, dx = \frac{1}{3} (x^2\pm a^2)^{3/2} + C
40 .- )         x2x2±a2,dx=x8(2x2±a2)x2±a2a48lnx+x2±a2+C\displaystyle \int x^2\sqrt{x^2 \pm a^2}, dx = \frac{x}{8} (2x^2\pm a^2)\sqrt{x^2\pm a^2} -\frac{a^4}{8}\ln | x+\sqrt{x^2 \pm a^2} | + C
41 .- )         x,dxx2±a2=x2±a2+C\displaystyle \int \frac{x, dx}{\sqrt{x^2\pm a^2}} = \sqrt{x^2 \pm a^2} + C
42 .- )         x2,dxx2±a2=12(xx2±a2a2lnx+x2±a2)+C\displaystyle \int \frac{x^2 , dx}{\sqrt{x^2\pm a^2}} = \frac{1}{2} \left(x\sqrt{x^2 \pm a^2} \mp a^2\ln | x+\sqrt{x^2 \pm a^2} |\right)+ C
43 .- )         (x2±a2)3/2,dx=x8(2x2±5a2)x2±a2+3a48lnx+x2±a2+C\displaystyle \int (x^2 \pm a^2)^{3/2} , dx = \frac{x}{8}(2x^2\pm 5a^2)\sqrt{x^2 \pm a^2} +\frac{3a^4}{8} \ln | x+\sqrt{x^2 \pm a^2} | + C
44 .- )         dx(x2±a2)3/2=±xa2x2±a2+C\displaystyle \int \frac{dx}{(x^2\pm a^2)^{3/2}} = \frac{\pm x}{a^2 \sqrt{x^2 \pm a^2}} + C
45 .- )         x,dx(x2±a2)3/2=1x2±a2+C\displaystyle \int \frac{x, dx}{(x^2\pm a^2)^{3/2}} = \frac{-1}{ \sqrt{x^2 \pm a^2}} + C
46 .- )         x2,dx(x2±a2)3/2=xx2±a2+lnx+x2±a2C\displaystyle \int \frac{x^2, dx}{(x^2\pm a^2)^{3/2}} = \frac{-x}{ \sqrt{x^2 \pm a^2}} + \ln | x+\sqrt{x^2 \pm a^2} |C
47 .- )         dxx2x2±a2=x2±a2a2x+C\displaystyle \int \frac{dx}{ x^2\sqrt{x^2 \pm a^2} } = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x} + C
48 .- )         dxx3x2a2=x2a22a2x2+12a3arccos(ax)+C\displaystyle \int \frac{dx}{x^3 \sqrt{x^2 - a^2}} = \frac{ \sqrt{x^2-a^2}}{2a^2x^2}+\frac{1}{2a^3} \arccos\left(\frac{a}{x} \right) + C
49 .- )         x2a2x,dx=x2a2arccos(ax)+C\displaystyle \int \frac{\sqrt{x^2-a^2}}{x} , dx = \sqrt{x^2-a^2}-\arccos\left( \frac{a}{x} \right) + C
50 .- )         x2±a2x2,dx=x2±a2x+lnx+x2±a2+C\displaystyle \int \frac{\sqrt{x^2\pm a^2}}{x^2}, dx = -\frac{\sqrt{x^2 \pm a^2}}{x}+\ln | x+\sqrt{x^2 \pm a^2} | + C
51 .- )         dxxx2+a2=1alnxa+x2+a2+C\displaystyle \int \frac{dx}{x\sqrt{x^2+a^2}} = \frac{1}{a} \ln \left|\frac{x}{a+\sqrt{x^2+a^2}} \right| + C
52 .- )         dxxx2a2=1aarccos(ax)+C\displaystyle \int \frac{dx}{x\sqrt{x^2-a^2}} = \frac{1}{a}\arccos\left( \frac{a}{x} \right) + C
53 .- )         dxx3x2+a2=x2+a22a2x2+12a3lna+x2+a2x+C\displaystyle \int \frac{dx}{x^3\sqrt{x^2+a^2}}=-\frac{\sqrt{x^2+a^2}}{2a^2x^2}+\frac{1}{2a^3}\ln \left|\frac{a+\sqrt{x^2+a^2}}{x} \right| + C
54 .- )         x2+a2x,dx=x2+a2alna+x2+a2x+C\displaystyle \int \frac{x^2+a^2}{x}, dx = \sqrt{x^2+a^2}-a\ln \left| \frac{a+\sqrt{x^2+a^2}}{x}\right| + C
55 .- )         2axx2,dx=xa22axx2+a22arctan(xaa)+C\displaystyle \int \sqrt{2ax-x^2}, dx = \frac{x-a}{2}\sqrt{2ax-x^2}+\frac{a^2}{2}\arctan \left(\frac{x-a}{a}\right) + C
56 .- )         dx2axx2=2arctanx2a+C=arccos(1xa)+C\displaystyle \int \frac{dx}{\sqrt{2ax-x^2}} = 2\arctan\sqrt{\frac{x}{2a}} + C=\arccos\left(1-\frac{x}{a} \right)+C
57 .- )         xn,dx2axx2=xn12axx2n+a(2n1)nxn1,dx2axx2+C\displaystyle \int \frac{x^n , dx}{\sqrt{2ax-x^2}} = -\frac{x^{n-1}\sqrt{2ax-x^2}}{n}+\frac{a(2n-1)}{n}\int \frac{ x^{n-1}, dx}{\sqrt{2ax-x^2}} + C
58 .- )         xn2axx2,dx=2axx2a(12n)xn+n1(2n1)adxxn12axx2+C\displaystyle \int x^n\sqrt{2ax-x^2}, dx= \frac{\sqrt{2ax- x^2}}{a(1-2n)x^n}+\frac{n-1}{(2n-1)a}\int \frac{dx}{x^{n-1}\sqrt{2ax-x^2}}+ C
59 .- )         xn2axx2,dx=xn1(2axx2)3/2n+2+(2n+1)an+2xn12axx2,dx+C\displaystyle \int x^n\sqrt{2ax-x^2}, dx = -\frac{x^{n-1}(2ax-x^2)^{3/2}}{n+2}+\frac{(2n+1)a}{n+2} \int x^{n-1}\sqrt{2ax-x^2}, dx + C
60 .- )         2axx2xn,dx=(2axx2)3/2(32n)axn+n3(2n3)a+C\displaystyle \int \frac{ \sqrt{2ax-x^2}}{x^n} , dx = \frac{(2ax-x^2)^{3/2}}{(3-2n)ax^n}+\frac{n-3}{(2n-3)a} + C
61 .- )         dx2axx23/2=xaa22axx2+C\displaystyle \int \frac{dx}{ \sqrt{2ax-x^2}^{3/2} } = \frac{x-a}{ a^2 \sqrt{2ax-x^2} } + C
62 .- )         dx2ax+x2=lnx+a+2ax+x2+C\displaystyle \int \frac{dx}{\sqrt{2ax+x^2}}=\ln | x+a+\sqrt{2ax+x^2}| + C
63 .- )         dxa+bx+cx2=24acb2arctan(2cx+b4acb2)+C\displaystyle \int \frac{dx}{a+bx+cx^2}=\frac{2}{4ac-b^2}\arctan\left( \frac{2cx+b}{\sqrt{4ac-b^2}}\right) + C
64 .- )         dxa+bxcx2=1c,arctan(2cxbb+4ac)+C\displaystyle \int \frac{dx}{a+bx-cx^2}=\frac{1}{\sqrt c},\arctan \left( \frac{2cx-b}{\sqrt{b+4ac}} \right) + C
65 .- )         dxa+bxcx2=1b2+4ac,lnb2+4acb+2cxb2+4ac+b2cx+C\displaystyle \int \frac{dx}{a+bx-cx^2}=\frac{1}{b^2+4ac}, \ln \left| \frac{ \sqrt{b^2+4ac}-b+2cx}{\sqrt{b^2+4ac}+b-2cx} \right| + C
66 .- )         dxa+bx+cx2=1cln2cx+b+2ca+bx+cx2+C\displaystyle \int \frac{dx}{\sqrt{a+bx+cx^2}} = \frac{1}{\sqrt{c}}\ln |2cx+b+2\sqrt{c}\sqrt{a+bx+cx^2} | + C
67 .- )         \(\displaystyle \int \sqrt{a+bx+cx^2}, dx = \frac{2cx+b}{4c}\sqrt{a+bx+cx^2}) \[= -\frac{b^2-4ac}{8x^{3/2}} \ln |2cx+b+2\sqrt{c}\sqrt{a+bx+cx^2} | + C\]
68 .- )         a+bxcx2,dx=2xcb4ca+bxcx2+b2+4ac8c3/2arctan(2cxbb2+4ac)+C\displaystyle \int \sqrt{a+bx-cx^2}, dx = \frac{2xc-b}{4c} \sqrt{a+bx-cx^2}+\frac{b^2+4ac}{8c^{3/2}} \arctan \left(\frac{2cx-b}{\sqrt{b^2+4ac}} \right)+ C
69 .- )         x,dxa+bxcx2=a+bxcx2c+b2c3/2,arctan(2cxbb2+4ac)+C\displaystyle \int \frac{x, dx}{\sqrt{a+bx-cx^2}} = -\frac{\sqrt{a+bx-cx^2}}{c}+\frac{b}{2c^{3/2}},\arctan \left(\frac{2cx-b}{\sqrt{b^2+4ac}}\right) + C
70 .- )         x,dxa+bx+cx2=a+bx+cx2cb2c3/2ln2cx+b+2ca+bx+cx2+C\displaystyle \int \frac{x, dx}{\sqrt{a+bx+cx^2}} = \frac{\sqrt{a+bx+cx^2}}{c}- \frac{b}{2c^{3/2}} \ln |2cx+b+2\sqrt{c}\sqrt{a+bx+cx^2} | + C


Trigonometric Integrals | go back

71 .- )         sin2(ax),dx=12a(axsin(ax)cos(ax))+C\displaystyle \int \sin^2 (ax) , dx = \frac{1}{2a}(ax-\sin (ax)\cos(ax)) + C
72 .- )         cos2(ax),dx=12a(ax+sin(ax)cos(ax))+C\displaystyle \int \cos^2(ax), dx = \frac{1}{2a}(ax+\sin (ax)\cos (ax)) + C
73 .- )         sinnx,dx=sinn1xcosxn+n1nsinn2x,dx+C\displaystyle \int \sin^n x, dx = -\frac{\sin^{n-1}x \cos x}{n}+\frac{n-1}{n}\int \sin^{n-2} x, dx + C
74 .- )         cosnx,dx=cosn1xsinxn+n1ncosn2x,dx+C\displaystyle \int \cos^n x, dx = \frac{\cos^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos^{n-2} x, dx+ C
75 .- )         tannx,dx=tann1xn1tann2x,dx+C\displaystyle \int \tan^n x, dx =\frac{\tan^{n-1} x}{n-1}-\int \tan{n-2}x, dx + C
76 .- )         cotnx,dx=cotn1xn1cotn2x,dx+C\displaystyle \int \cot^n x, dx =\frac{\cot^{n-1} x}{n-1}-\int \cot^{n-2}x, dx + C
77 .- )         sec2x,dx=tanx+C \displaystyle \int \sec^2 x, dx = \tan x + C
78 .- )         csc2x,dx=cotx+C \displaystyle \int \csc^2 x, dx = -\cot x + C
79 .- )         secnx,dx=tanxsecn2xn1+n2n1secn2x,dx+C \displaystyle \int \sec^n x, dx = \frac{\tan x \sec^{n-2} x}{n-1}+\frac{n-2}{n-1} \int \sec^{n-2} x, dx + C
80 .- )         cscnx,dx=cotxcscn2xn1+n2n1cscn2x,dx+C \displaystyle \int \csc^n x , dx = -\frac{\cot x \csc^{n-2} x}{n-1} +\frac{n-2}{n-1} \int \csc^{n-2} x, dx + C
81 .- )         secxtanx,dx=secx+C \displaystyle \int \sec x \tan x , dx = \sec x + C
82 .- )         cscxcotx=cscx+C \displaystyle \int \csc x \cot x = -\csc x + C
83 .- )         cosnxsinmx,dx=+C \displaystyle \int \cos^n x \sin^m x, dx = + C =cosm1xsinn+1xm+n+m1m+ncosm2xsinnx,dx = \frac{ \cos^{m-1} x \sin^{n+1} x }{m+n} + \frac{m-1}{m+n} \int \cos^{m-2} x \sin^n x , dx =sinn1xcosm+1xm+n+n1m+ncosmxsinn2x,dx = \frac{ \sin^{n-1} x \cos^{m+1} x }{m+n} + \frac{n-1}{m+n} \int \cos^{m} x \sin^{n-2} x , dx =cosm+1xsinn+1xm+1+m+n+2m+1cosm+2xsinnx,dx = \frac{ \cos^{m+1} x \sin^{n+1} x }{m+1} + \frac{m+n+2}{m+1} \int \cos^{m+2} x \sin^n x , dx =cosm+1xsinn+1xn+1+m+n+2n+1cosmxsinn+2x,dx = \frac{ \cos^{m+1} x \sin^{n+1} x }{n+1} + \frac{m+n+2}{n+1} \int \cos^{m} x \sin^{n+2} x , dx



In case you have any suggestion, please do not hesitate to contact us .




In case you have any suggestion, or if you would like to report a broken solver/calculator, please do not hesitate to contact us .

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in