ASSESSMENT 3 (Q1, Q5, Q6, Q7) Q1. For each of the data sets discussed in this section, construct a scatterplot


ASSESSMENT 3 (Q1, Q5, Q6, Q7)

Q1. For each of the data sets discussed in this section, construct a scatterplot of y versus x, and produce the regression output relating y to x.

  1. Estimating Residential Real Estate Values:
    VALUE SIZE
    23974 1442
    24087 1426
    16781 1632
    29061 910
    37982 972
    29433 912
    33624 1400
    27032 1087
    28653 1139
    33075 1386
    17474 756
    33852 1044
    29046 1032
    20715 720
    19461 734
    21377 720
    52881 1635
    43889 1381
    45134 1372
    47655 1349
    53088 1599
    38923 1171
    57870 1966
    30489 1504
    29207 1296
    44919 1356
    48090 1553
    40521 1142
    43403 1268
    38112 1008
    27710 1120
    27621 960
    22258 920
    29064 1259
    12001 783
    37650 1874
    27930 1242
    16066 772
    20411 908
    23672 1155
    24215 1004
    22020 958
    52863 1828
    41822 1146
    45104 1368
    28154 1392
    20943 1058
    17851 1375
    16616 648
    38752 1313
    44377 1780
    43566 1148
    38950 1363
    44633 1262
    12372 840
    12148 840
    19852 839
    20012 852
    20314 852
    22814 974
    24696 1135
    23443 1170
    35904 960
    21799 1052
    28212 1296
    27553 1282
    15826 916
    18660 864
    21536 1404
    24147 1676
    17867 1131
    21583 1397
    15482 888
    24857 1448
    17716 1022
    224182 2251
    182012 1126
    201597 2617
    49683 966
    60647 1469
    49024 1322
    52092 1509
    55645 1724
    51919 1559
    55174 2133
    48760 1233
    45906 1323
    52013 1733
    56612 1357
    69197 1234
    84416 1434
    60962 1384
    47359 995
    56302 1372
    88285 1774
    91862 1903
    242690 3581
    296251 4343
    107132 1861
    77797 1542
  2. Pricing Communications Nodes:
    COST NUMPORTS
    52388 68
    51761 52
    50221 44
    36095 32
    27500 16
    57088 56
    54475 56
    33969 28
    31309 24
    23444 24
    24269 12
    53479 52
    33543 20
    33056 24
  3. Forecasting Housing Starts:
YEAR STARTS RATES
1963 1,603.2 5.89
1964 1,528.8 5.83
1965 1,472.8 5.81
1966 1,164.9 6.25
1967 1,291.6 6.46
1968 1,507.6 6.97
1969 1,466.8 7.81
1970 1,433.6 8.45
1971 2,052.2 7.74
1972 2,356.6 7.60
1973 2,045.3 7.96
1974 1,337.7 8.92
1975 1,160.4 9.00
1976 1,537.5 9.00
1977 1,987.1 9.02
1978 2,020.3 9.56
1979 1,745.1 10.78
1980 1,292.2 12.66
1981 1,084.2 14.70
1982 1,062.2 15.14
1983 1,703.0 12.57
1984 1,749.5 12.38
1985 1,741.8 11.55
1986 1,805.4 10.17
1987 1,620.5 9.31
1988 1,488.1 9.19
1989 1,376.1 10.13
1990 1,192.7 10.05
1991 1,013.9 9.32
1992 1,199.7 8.24
1993 1,287.6 7.20
1994 1,457.0 7.49
1995 1,354.1 7.87
1996 1,476.8 7.80
1997 1,474.0 7.71
1998 1,616.9 7.07
1999 1,640.9 7.04
2000 1,568.7 7.52
2001 1,602.7 7.00
2002 1,704.9 6.43

Q2. Make a scatterplot of consumption versus income

Q3. Create a regression model for tensile strength versus outside diam and molybdenum C.

Q4. Create a regression model profit versus employees, dividends and inventory

Q5. Major League Baseball Wins. What factor is most important in building a winning baseball team? Some might argue for a high batting average. Or it might be a team that hits for power as measured by the number of home runs. On the other hand, many believe that it is quality pitching as measured by the earned run average of the team’s pitchers.

WINS = number of games won

HR = number of home runs hit

BA = average batting average

ERA = earned run average

Using WINS as the dependent variable, use scatterplots and regression to investigate the relationship of the other three variables to WINS. Which of the three possible explanatory variables exhibits the strongest relationship to WINS? What might this suggest to managers of major league baseball teams?

Team WINS HR BA ERA
Anaheim Angels 99 152 0.282 3.69
Baltimore Orioles 67 165 0.246 4.46
Boston Red Sox 93 177 0.277 3.75
Chicago White Sox 81 217 0.268 4.53
Cleveland Indians 74 192 0.249 4.91
Detroit Tigers 55 124 0.248 4.93
Kansas City Royals 62 140 0.256 5.21
Minnesota Twins 94 167 0.272 4.12
New York Yankees 103 223 0.275 3.87
Oakland Athletics 103 205 0.261 3.68
Seattle Mariners 93 152 0.275 4.07
Tampa Bay Devil Rays 55 133 0.253 5.29
Texas Rangers 72 230 0.269 5.15
Toronto Blue Jays 78 187 0.261 4.8
Arizona Diamondbacks 98 165 0.267 3.92
Atlanta Braves 101 164 0.26 3.13
Chicago Cubs 67 200 0.246 4.29
Cincinnati Reds 78 169 0.253 4.27
Colorado Rockies 73 152 0.274 5.2
Florida Marlins 79 146 0.261 4.36
Houston Astros 84 167 0.262 4
Los Angeles Dodgers 92 155 0.264 3.69
Milwaukee Brewers 56 139 0.253 4.73
Montreal Expos 83 162 0.261 3.97
New York Mets 75 160 0.256 3.89
Philadelphia Phillies 80 165 0.259 4.17
Pittsburgh Pirates 72 142 0.244 4.23
St. Louis Cardinales 97 175 0.268 3.7
San Diego Padres 66 136 0.253 4.62
San Francisco Giants 95 198 0.267 3.54

Q6. Major League Baseball Salaries. The owners of MLB teams are concerned with rising salaries. The table below provides average salary (AVESAL) of the 30 MLB teams for the 2002 season. Also provided is the number of wins (WINS) for each team during the 2002 season. Is there evidence that teams with higher total payrolls tend to be more successful? Justify your answer.

Team WINS AVESAL
Anaheim Angels 99 2160054
Baltimore Orioles 67 1855318
Boston Red Sox 93 3633457
Chicago White Sox 81 1791286
Cleveland Indians 74 2106591
Detroit Tigers 55 1562847
Kansas City Royals 62 1832594
Minnesota Twins 94 1430068
New York Yankees 103 4902777
Oakland Athletics 103 1746264
Seattle Mariners 93 3337435
Tampa Bay Devil Rays 55 1131474
Texas Rangers 72 3123803
Toronto Blue Jays 78 1868356
Arizona Diamondbacks 98 3199608
Atlanta Braves 101 3166233
Chicago Cubs 67 2528398
Cincinnati Reds 78 1658363
Colorado Rockies 73 1848858
Florida Marlins 79 1506567
Houston Astros 84 2449680
Los Angeles Dodgers 92 3396961
Milwaukee Brewers 56 1338991
Montreal Expos 83 1497309
New York Mets 75 3192482
Philadelphia Phillies 80 2086812
Pittsburgh Pirates 72 1370088
St. Louis Cardinales 97 2998072
San Diego Padres 66 1292744
San Francisco Giants 95 3030571

Q7. Fanfare. Fanfare International, Inc., designs, distributes, and markets ceiling fans and lighting fixtures. The company’s product line includes 120 basic models of ceiling fans and 138 compatible fan light kits and table lamps. These products are marketed to over 1000 lighting showrooms and electrical wholesalers that supply the remodeling and new construction markets. The product line is distributed by a sales organization of 58 independent sales representatives.

In the summer of 1994, Fanfare decided it needed to develop forecasts of future sales to help determine future saleforce needs, capital expenditures, and so on. The table below contains monthly sales data and data on three additional variables for the period July 1990 through May 1994. The variables are defined as follows

SALES = total monthly sales in thousands of dollars

ADDEX = advertising expense in thousands of dollars

MTGRATE = mortgage rate for 30-year loans (%)

HSSTARTS = housing starts in thousands of units

The table contains the four variables as shown, plus columns for year and month. The sales data have been transformed to provide confidentiality.

As a consultant to Fanfare, your job is to find the best single variable to forecast future sales. Try each of the three variables in a simple regression and decide which is the best to create a forecasting model for Fanfare. Justify your choice. What problems do you see with using each of the three possible variables to help forecast sales?

YEAR MONTH SALES AD EX MTG RATE HS STARTS
90 7 1538 14 10.04 111.2
90 8 1360 14 10.1 102.8
90 9 1202 68 10.18 93.1
90 10 1243 35 10.18 94.2
90 11 1076 35 10.01 81.4
90 12 691 32 9.67 57.4
91 1 1036 94 9.64 52.5
91 2 891 75 9.37 59.1
91 3 1120 76 9.5 73.8
91 4 1490 73 9.49 99.7
91 5 1672 71 9.47 97.7
91 6 1517 209 9.62 103.4
91 7 1866 95 9.58 103.5
91 8 1588 59 9.24 94.7
91 9 1430 77 9.01 86.6
91 10 1636 94 8.86 101.8
91 11 1225 168 8.71 75.6
91 12 1027 149 8.5 65.6
92 1 1323 100 8.43 71.6
92 2 1257 128 8.76 78.8
92 3 1915 88 8.94 111.6
92 4 1422 124 8.85 107.6
92 5 1697 103 8.67 115.2
92 6 2053 89 8.51 117.8
92 7 1965 156 8.13 106.2
92 8 1855 158 7.98 109.9
92 9 1911 168 7.92 106
92 10 1754 174 8.09 111.8
92 11 1559 321 8.31 84.5
92 12 1333 206 8.22 78.6
93 1 1675 224 8.02 70.5
93 2 1360 183 7.68 74.6
93 3 1667 281 7.5 95.5
93 4 1889 255 7.47 117.8
93 5 1906 318 7.47 120.9
93 6 2246 235 7.42 128.5
93 7 2232 169 7.21 115.3
93 8 2300 250 7.11 121.8
93 9 2097 231 6.92 118.5
93 10 2008 222 6.83 123.2
93 11 1931 184 7.16 102.3
93 12 1720 177 7.17 98.7
94 1 1936 363 7.06 76.2
94 2 1847 268 7.15 83.5
94 3 2399 229 7.68 134.3
94 4 2176 287 8.32 137.6
Price: $23.59
Solution: The downloadable solution consists of 15 pages, 859 words and 17 charts.
Deliverable: Word Document


log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in