ASSESSMENT 3 (Q1, Q5, Q6, Q7) Q1. For each of the data sets discussed in this section, construct a scatterplot
ASSESSMENT 3 (Q1, Q5, Q6, Q7)
Q1. For each of the data sets discussed in this section, construct a scatterplot of y versus x, and produce the regression output relating y to x.
-
Estimating Residential Real Estate Values:
VALUE SIZE 23974 1442 24087 1426 16781 1632 29061 910 37982 972 29433 912 33624 1400 27032 1087 28653 1139 33075 1386 17474 756 33852 1044 29046 1032 20715 720 19461 734 21377 720 52881 1635 43889 1381 45134 1372 47655 1349 53088 1599 38923 1171 57870 1966 30489 1504 29207 1296 44919 1356 48090 1553 40521 1142 43403 1268 38112 1008 27710 1120 27621 960 22258 920 29064 1259 12001 783 37650 1874 27930 1242 16066 772 20411 908 23672 1155 24215 1004 22020 958 52863 1828 41822 1146 45104 1368 28154 1392 20943 1058 17851 1375 16616 648 38752 1313 44377 1780 43566 1148 38950 1363 44633 1262 12372 840 12148 840 19852 839 20012 852 20314 852 22814 974 24696 1135 23443 1170 35904 960 21799 1052 28212 1296 27553 1282 15826 916 18660 864 21536 1404 24147 1676 17867 1131 21583 1397 15482 888 24857 1448 17716 1022 224182 2251 182012 1126 201597 2617 49683 966 60647 1469 49024 1322 52092 1509 55645 1724 51919 1559 55174 2133 48760 1233 45906 1323 52013 1733 56612 1357 69197 1234 84416 1434 60962 1384 47359 995 56302 1372 88285 1774 91862 1903 242690 3581 296251 4343 107132 1861 77797 1542 -
Pricing Communications Nodes:
COST NUMPORTS 52388 68 51761 52 50221 44 36095 32 27500 16 57088 56 54475 56 33969 28 31309 24 23444 24 24269 12 53479 52 33543 20 33056 24 - Forecasting Housing Starts:
| YEAR | STARTS | RATES |
| 1963 | 1,603.2 | 5.89 |
| 1964 | 1,528.8 | 5.83 |
| 1965 | 1,472.8 | 5.81 |
| 1966 | 1,164.9 | 6.25 |
| 1967 | 1,291.6 | 6.46 |
| 1968 | 1,507.6 | 6.97 |
| 1969 | 1,466.8 | 7.81 |
| 1970 | 1,433.6 | 8.45 |
| 1971 | 2,052.2 | 7.74 |
| 1972 | 2,356.6 | 7.60 |
| 1973 | 2,045.3 | 7.96 |
| 1974 | 1,337.7 | 8.92 |
| 1975 | 1,160.4 | 9.00 |
| 1976 | 1,537.5 | 9.00 |
| 1977 | 1,987.1 | 9.02 |
| 1978 | 2,020.3 | 9.56 |
| 1979 | 1,745.1 | 10.78 |
| 1980 | 1,292.2 | 12.66 |
| 1981 | 1,084.2 | 14.70 |
| 1982 | 1,062.2 | 15.14 |
| 1983 | 1,703.0 | 12.57 |
| 1984 | 1,749.5 | 12.38 |
| 1985 | 1,741.8 | 11.55 |
| 1986 | 1,805.4 | 10.17 |
| 1987 | 1,620.5 | 9.31 |
| 1988 | 1,488.1 | 9.19 |
| 1989 | 1,376.1 | 10.13 |
| 1990 | 1,192.7 | 10.05 |
| 1991 | 1,013.9 | 9.32 |
| 1992 | 1,199.7 | 8.24 |
| 1993 | 1,287.6 | 7.20 |
| 1994 | 1,457.0 | 7.49 |
| 1995 | 1,354.1 | 7.87 |
| 1996 | 1,476.8 | 7.80 |
| 1997 | 1,474.0 | 7.71 |
| 1998 | 1,616.9 | 7.07 |
| 1999 | 1,640.9 | 7.04 |
| 2000 | 1,568.7 | 7.52 |
| 2001 | 1,602.7 | 7.00 |
| 2002 | 1,704.9 | 6.43 |
Q2. Make a scatterplot of consumption versus income
Q3. Create a regression model for tensile strength versus outside diam and molybdenum C.
Q4. Create a regression model profit versus employees, dividends and inventory
Q5. Major League Baseball Wins. What factor is most important in building a winning baseball team? Some might argue for a high batting average. Or it might be a team that hits for power as measured by the number of home runs. On the other hand, many believe that it is quality pitching as measured by the earned run average of the team’s pitchers.
WINS = number of games won
HR = number of home runs hit
BA = average batting average
ERA = earned run average
Using WINS as the dependent variable, use scatterplots and regression to investigate the relationship of the other three variables to WINS. Which of the three possible explanatory variables exhibits the strongest relationship to WINS? What might this suggest to managers of major league baseball teams?
| Team | WINS | HR | BA | ERA |
| Anaheim Angels | 99 | 152 | 0.282 | 3.69 |
| Baltimore Orioles | 67 | 165 | 0.246 | 4.46 |
| Boston Red Sox | 93 | 177 | 0.277 | 3.75 |
| Chicago White Sox | 81 | 217 | 0.268 | 4.53 |
| Cleveland Indians | 74 | 192 | 0.249 | 4.91 |
| Detroit Tigers | 55 | 124 | 0.248 | 4.93 |
| Kansas City Royals | 62 | 140 | 0.256 | 5.21 |
| Minnesota Twins | 94 | 167 | 0.272 | 4.12 |
| New York Yankees | 103 | 223 | 0.275 | 3.87 |
| Oakland Athletics | 103 | 205 | 0.261 | 3.68 |
| Seattle Mariners | 93 | 152 | 0.275 | 4.07 |
| Tampa Bay Devil Rays | 55 | 133 | 0.253 | 5.29 |
| Texas Rangers | 72 | 230 | 0.269 | 5.15 |
| Toronto Blue Jays | 78 | 187 | 0.261 | 4.8 |
| Arizona Diamondbacks | 98 | 165 | 0.267 | 3.92 |
| Atlanta Braves | 101 | 164 | 0.26 | 3.13 |
| Chicago Cubs | 67 | 200 | 0.246 | 4.29 |
| Cincinnati Reds | 78 | 169 | 0.253 | 4.27 |
| Colorado Rockies | 73 | 152 | 0.274 | 5.2 |
| Florida Marlins | 79 | 146 | 0.261 | 4.36 |
| Houston Astros | 84 | 167 | 0.262 | 4 |
| Los Angeles Dodgers | 92 | 155 | 0.264 | 3.69 |
| Milwaukee Brewers | 56 | 139 | 0.253 | 4.73 |
| Montreal Expos | 83 | 162 | 0.261 | 3.97 |
| New York Mets | 75 | 160 | 0.256 | 3.89 |
| Philadelphia Phillies | 80 | 165 | 0.259 | 4.17 |
| Pittsburgh Pirates | 72 | 142 | 0.244 | 4.23 |
| St. Louis Cardinales | 97 | 175 | 0.268 | 3.7 |
| San Diego Padres | 66 | 136 | 0.253 | 4.62 |
| San Francisco Giants | 95 | 198 | 0.267 | 3.54 |
Q6. Major League Baseball Salaries. The owners of MLB teams are concerned with rising salaries. The table below provides average salary (AVESAL) of the 30 MLB teams for the 2002 season. Also provided is the number of wins (WINS) for each team during the 2002 season. Is there evidence that teams with higher total payrolls tend to be more successful? Justify your answer.
| Team | WINS | AVESAL |
| Anaheim Angels | 99 | 2160054 |
| Baltimore Orioles | 67 | 1855318 |
| Boston Red Sox | 93 | 3633457 |
| Chicago White Sox | 81 | 1791286 |
| Cleveland Indians | 74 | 2106591 |
| Detroit Tigers | 55 | 1562847 |
| Kansas City Royals | 62 | 1832594 |
| Minnesota Twins | 94 | 1430068 |
| New York Yankees | 103 | 4902777 |
| Oakland Athletics | 103 | 1746264 |
| Seattle Mariners | 93 | 3337435 |
| Tampa Bay Devil Rays | 55 | 1131474 |
| Texas Rangers | 72 | 3123803 |
| Toronto Blue Jays | 78 | 1868356 |
| Arizona Diamondbacks | 98 | 3199608 |
| Atlanta Braves | 101 | 3166233 |
| Chicago Cubs | 67 | 2528398 |
| Cincinnati Reds | 78 | 1658363 |
| Colorado Rockies | 73 | 1848858 |
| Florida Marlins | 79 | 1506567 |
| Houston Astros | 84 | 2449680 |
| Los Angeles Dodgers | 92 | 3396961 |
| Milwaukee Brewers | 56 | 1338991 |
| Montreal Expos | 83 | 1497309 |
| New York Mets | 75 | 3192482 |
| Philadelphia Phillies | 80 | 2086812 |
| Pittsburgh Pirates | 72 | 1370088 |
| St. Louis Cardinales | 97 | 2998072 |
| San Diego Padres | 66 | 1292744 |
| San Francisco Giants | 95 | 3030571 |
Q7. Fanfare. Fanfare International, Inc., designs, distributes, and markets ceiling fans and lighting fixtures. The company’s product line includes 120 basic models of ceiling fans and 138 compatible fan light kits and table lamps. These products are marketed to over 1000 lighting showrooms and electrical wholesalers that supply the remodeling and new construction markets. The product line is distributed by a sales organization of 58 independent sales representatives.
In the summer of 1994, Fanfare decided it needed to develop forecasts of future sales to help determine future saleforce needs, capital expenditures, and so on. The table below contains monthly sales data and data on three additional variables for the period July 1990 through May 1994. The variables are defined as follows
SALES = total monthly sales in thousands of dollars
ADDEX = advertising expense in thousands of dollars
MTGRATE = mortgage rate for 30-year loans (%)
HSSTARTS = housing starts in thousands of units
The table contains the four variables as shown, plus columns for year and month. The sales data have been transformed to provide confidentiality.
As a consultant to Fanfare, your job is to find the best single variable to forecast future sales. Try each of the three variables in a simple regression and decide which is the best to create a forecasting model for Fanfare. Justify your choice. What problems do you see with using each of the three possible variables to help forecast sales?
| YEAR | MONTH | SALES | AD EX | MTG RATE | HS STARTS |
| 90 | 7 | 1538 | 14 | 10.04 | 111.2 |
| 90 | 8 | 1360 | 14 | 10.1 | 102.8 |
| 90 | 9 | 1202 | 68 | 10.18 | 93.1 |
| 90 | 10 | 1243 | 35 | 10.18 | 94.2 |
| 90 | 11 | 1076 | 35 | 10.01 | 81.4 |
| 90 | 12 | 691 | 32 | 9.67 | 57.4 |
| 91 | 1 | 1036 | 94 | 9.64 | 52.5 |
| 91 | 2 | 891 | 75 | 9.37 | 59.1 |
| 91 | 3 | 1120 | 76 | 9.5 | 73.8 |
| 91 | 4 | 1490 | 73 | 9.49 | 99.7 |
| 91 | 5 | 1672 | 71 | 9.47 | 97.7 |
| 91 | 6 | 1517 | 209 | 9.62 | 103.4 |
| 91 | 7 | 1866 | 95 | 9.58 | 103.5 |
| 91 | 8 | 1588 | 59 | 9.24 | 94.7 |
| 91 | 9 | 1430 | 77 | 9.01 | 86.6 |
| 91 | 10 | 1636 | 94 | 8.86 | 101.8 |
| 91 | 11 | 1225 | 168 | 8.71 | 75.6 |
| 91 | 12 | 1027 | 149 | 8.5 | 65.6 |
| 92 | 1 | 1323 | 100 | 8.43 | 71.6 |
| 92 | 2 | 1257 | 128 | 8.76 | 78.8 |
| 92 | 3 | 1915 | 88 | 8.94 | 111.6 |
| 92 | 4 | 1422 | 124 | 8.85 | 107.6 |
| 92 | 5 | 1697 | 103 | 8.67 | 115.2 |
| 92 | 6 | 2053 | 89 | 8.51 | 117.8 |
| 92 | 7 | 1965 | 156 | 8.13 | 106.2 |
| 92 | 8 | 1855 | 158 | 7.98 | 109.9 |
| 92 | 9 | 1911 | 168 | 7.92 | 106 |
| 92 | 10 | 1754 | 174 | 8.09 | 111.8 |
| 92 | 11 | 1559 | 321 | 8.31 | 84.5 |
| 92 | 12 | 1333 | 206 | 8.22 | 78.6 |
| 93 | 1 | 1675 | 224 | 8.02 | 70.5 |
| 93 | 2 | 1360 | 183 | 7.68 | 74.6 |
| 93 | 3 | 1667 | 281 | 7.5 | 95.5 |
| 93 | 4 | 1889 | 255 | 7.47 | 117.8 |
| 93 | 5 | 1906 | 318 | 7.47 | 120.9 |
| 93 | 6 | 2246 | 235 | 7.42 | 128.5 |
| 93 | 7 | 2232 | 169 | 7.21 | 115.3 |
| 93 | 8 | 2300 | 250 | 7.11 | 121.8 |
| 93 | 9 | 2097 | 231 | 6.92 | 118.5 |
| 93 | 10 | 2008 | 222 | 6.83 | 123.2 |
| 93 | 11 | 1931 | 184 | 7.16 | 102.3 |
| 93 | 12 | 1720 | 177 | 7.17 | 98.7 |
| 94 | 1 | 1936 | 363 | 7.06 | 76.2 |
| 94 | 2 | 1847 | 268 | 7.15 | 83.5 |
| 94 | 3 | 2399 | 229 | 7.68 | 134.3 |
| 94 | 4 | 2176 | 287 | 8.32 | 137.6 |
Deliverable: Word Document
