(Steps Shown) Show that the change of variables V=xy transforms the DE (dy)/(dx)=y/xF(xy) into the separable DE (1)/(V[ F(V)+1 ])(dV)/(dx)=1/x (b) Use the
Question: Show that the change of variables \(V=xy\) transforms the DE
\[\frac{dy}{dx}=\frac{y}{x}F\left( xy \right)\]into the separable DE
\[\frac{1}{V\left[ F\left( V \right)+1 \right]}\frac{dV}{dx}=\frac{1}{x}\](b) Use the above result to solve
\[\frac{dy}{dx}=\frac{y}{x}\left[ \ln \left( yx \right)-1 \right]\]
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 