Solution) Differentiate (a) y=(1)/({{(x^3+4x^2-6x+11))^5}} (b) y={{ tan }^2}( cos 2x) (c) x^2-y^2=x^3y (d


Question: Differentiate

(a) \(y=\frac{1}{{{\left( {{x}^{3}}+4{{x}^{2}}-6x+11 \right)}^{5}}}\)

(b) \(y={{\tan }^{2}}\left( \cos 2x \right)\)

(c) \({{x}^{2}}-{{y}^{2}}={{x}^{3}}y\)

(d) \(y={{x}^{x}}\)

(e) \(y={{\left( \frac{{{\left( x+1 \right)}^{10}}}{{{\left( 9{{x}^{3}}+3x-11 \right)}^{7}}} \right)}^{7/2}}\)

(f) \(y=x{{\ln }^{2}}x\)

(g) \(y=\ln \left( x+\ln x \right)\)

(h) \(y={{\left( 3{{x}^{2}}+7 \right)}^{2x}}\)

(i) \(y={{\pi }^{x}}+{{\pi }^{\pi }}+\pi x\)

(j) \(y={{\log }^{5}}|\sin x|\)

(k) \(y={{3}^{\tan x}}\)

(l) \(y=\ln \left( {{x}^{2}}+{{e}^{5x+1}} \right)\)

(m) \(y=\ln \left( {{\log }_{10}}\left( {{x}^{2}}+5 \right) \right)\)

(n) \(y={{\arctan }^{4}}\left( \cos \left( {{x}^{2}} \right) \right)\)

(0) \(y=\frac{\arctan x}{\text{arc}\cot x}\)

(p) \(y=\cos \left( x\sin \arcsin \left( x \right) \right)\)

(r) \(y=x\,\text{arcsec}\left( {{x}^{2}}+2 \right)\)

(s) \(\arcsin y-\arccos x=1\)

Price: $2.99
Solution: The solution consists of 5 pages
Deliverables: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in