Solution) Differentiate (a) y=(1)/({{(x^3+4x^2-6x+11))^5}} (b) y={{ tan }^2}( cos 2x) (c) x^2-y^2=x^3y (d
Question: Differentiate
(a) \(y=\frac{1}{{{\left( {{x}^{3}}+4{{x}^{2}}-6x+11 \right)}^{5}}}\)
(b) \(y={{\tan }^{2}}\left( \cos 2x \right)\)
(c) \({{x}^{2}}-{{y}^{2}}={{x}^{3}}y\)
(d) \(y={{x}^{x}}\)
(e) \(y={{\left( \frac{{{\left( x+1 \right)}^{10}}}{{{\left( 9{{x}^{3}}+3x-11 \right)}^{7}}} \right)}^{7/2}}\)
(f) \(y=x{{\ln }^{2}}x\)
(g) \(y=\ln \left( x+\ln x \right)\)
(h) \(y={{\left( 3{{x}^{2}}+7 \right)}^{2x}}\)
(i) \(y={{\pi }^{x}}+{{\pi }^{\pi }}+\pi x\)
(j) \(y={{\log }^{5}}|\sin x|\)
(k) \(y={{3}^{\tan x}}\)
(l) \(y=\ln \left( {{x}^{2}}+{{e}^{5x+1}} \right)\)
(m) \(y=\ln \left( {{\log }_{10}}\left( {{x}^{2}}+5 \right) \right)\)
(n) \(y={{\arctan }^{4}}\left( \cos \left( {{x}^{2}} \right) \right)\)
(0) \(y=\frac{\arctan x}{\text{arc}\cot x}\)
(p) \(y=\cos \left( x\sin \arcsin \left( x \right) \right)\)
(r) \(y=x\,\text{arcsec}\left( {{x}^{2}}+2 \right)\)
(s) \(\arcsin y-\arccos x=1\)
Deliverables: Word Document
