Solution: Use the Ratio or Root Tests to determine if the series converges or diverges. ∑_n=1^∞ (n !)/(100^n) ∑_n=1^∞(-1)^n+1 (n^2 2^n)/(n


Question: Use the Ratio or Root Tests to determine if the series converges or diverges.

  1. \(\sum_{n=1}^{\infty} \frac{n !}{100^{n}}\)
  2. \(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2} 2^{n}}{n !}\)
  3. \(\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n^{n}}\)
  4. \[\frac{2}{5}+\frac{2\cdot 6}{5\cdot 8}+\frac{2\cdot 6-10}{5\cdot 8\cdot 11}+\frac{2\cdot 6\cdot 10\cdot 14}{5\cdot 8\cdot 11\cdot 14}+\cdots \]

Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in