Solution: Use the Ratio or Root Tests to determine if the series converges or diverges. ∑_n=1^∞ (n !)/(100^n) ∑_n=1^∞(-1)^n+1 (n^2 2^n)/(n
Question: Use the Ratio or Root Tests to determine if the series converges or diverges.
- \(\sum_{n=1}^{\infty} \frac{n !}{100^{n}}\)
- \(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2} 2^{n}}{n !}\)
- \(\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n^{n}}\)
- \[\frac{2}{5}+\frac{2\cdot 6}{5\cdot 8}+\frac{2\cdot 6-10}{5\cdot 8\cdot 11}+\frac{2\cdot 6\cdot 10\cdot 14}{5\cdot 8\cdot 11\cdot 14}+\cdots \]
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 