(Solved) Use an appropriate testing method to determine if the series converges or diverges. If the series is alternating and convergent, then determine


Question: Use an appropriate testing method to determine if the series converges or diverges. If the series is alternating and convergent, then determine if it converges absolutely or conditionally. Please state tests you are using!

  1. \(\sum_{n=1}^{\infty} \frac{(2 n+1)^{n}}{n^{2 n}}\)
  2. \(\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}-1}}{n^{3}+2 n^{2}+5}\)
  3. \(\sum_{k=1}^{\infty} \frac{2^{k} k !}{(k+2) !}\)
  4. \(\sum_{n=1}^{\infty} \frac{\sin 2 n}{1+2^{n}}\)
  5. \(\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}-1}[3]\)
  6. \(\sum_{n=1}^{\infty} n \sin \left(\frac{1}{n}\right)[1]\)
  7. \(\sum_{k=1}^{\infty} \frac{5^{k}}{3^{k}+4^{k}}\)
  8. \(\sum_{n=1}^{\infty} n^{2} e^{-n^{3}}\)

Price: $2.99
Solution: The downloadable solution consists of 3 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in