[Solution] Find the interval of convergence for the following power series: ∑_n=0^∞ ((-1)^n x^n)/(n+1) ∑_n=1^∞ √n x^n ∑_n=0^∞(-1)^n
Question: Find the interval of convergence for the following power series:
- \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n+1}\)
- \(\sum_{n=1}^{\infty} \sqrt{n} x^{n}\)
- \(\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{2 n+1}\)
- \(\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n 3^{n}}\)
- \(\sum_{n=1}^{\infty} \frac{n^{2} x^{n}}{2 \cdot 4 \cdot 6 \cdots \cdot(2 n)}\)
- \(\sum_{n=2}^{\infty} \frac{x^{2 n}}{n(\ln n)^{2}}\)
Price: $2.99
Solution: The downloadable solution consists of 4 pages
Deliverable: Word Document 