[See Solution] (a) Use the change of variables u=x+y, v=x-y to evaluate ∫_R √x+y sin (x-y) d d x d y where R is the quadrilateral with vertices at
Question: (a) Use the change of variables \(u=x+y, v=x-y\) to evaluate
\[\int_{R} \sqrt{x+y} \sin (x-y) \mathrm{d} d x d y\]where \(R\) is the quadrilateral with vertices at
\[(0,0),(2,2),\left(2+\frac{\pi}{2}, 2-\frac{\pi}{2}\right),\left(\frac{\pi}{2},-\frac{\pi}{2}\right)\](b) Using change of variables
\[x=u+2 v, y=2 v+a\]evaluate the integral
\[\int_{\Omega}(x-y) d x d y\]where \(\Omega\) is a parallelogram whose sides are given by the lines:
\[y=x, y=x+a, y=a, y=3 a\]and \(a>0\) is a fixed real number.
(c) Using cylindrical coordinates evaluate the integral
\[\int_{V} \sqrt{x^{2}+y^{2}+1} \mathrm{~d} d x d y d z\]where \(V\) is the region in the first octant
\[\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \geq 0, y \geq 0, z \geq 0\right\}\]bounded by the cylinder \(x^{2}+y^{2}=1\) and the plane \(z=1\)
Deliverable: Word Document 