(Steps Shown) In this problem we have the symmetric matrix
Question: In this problem we have the symmetric matrix
\[A=\left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 3 & -4 \\ 0 & -4 & 3 \end{array}\right)\]
- Calculate the characteristic polynomial \(\operatorname{det}\left(A-\lambda I_{3}\right)\).
- Find the eigenvalues of \(A\).
- For each eigenvalue of \(A\), find an orthonormal basis| for the corresponding eigenspace.
- Find an orthogonal matrix \(P\) and a diagonal matrix \(D\) so that \(P^{t} A P=D\).
- Show that for each real number \(\mu\) and for each \(n \geq 1,\left(A+\mu I_{3}\right)^{n}=P\left(D+\mu I_{3}\right)^{n} P^{t} .\) In particular, calculate \(\left(A+I_{3}\right)^{3}\).
Price: $2.99
Solution: The downloadable solution consists of 4 pages
Deliverable: Word Document 