[Solution] Let M_2,2 be the vector space of all 2 * 2 matrices with real entries. We will identify M_2,2 with the space R^4 using the basis
Question: Let \(M_{2,2}\) be the vector space of all \(2 \times 2\) matrices with real entries. We will identify \(M_{2,2}\) with the space \(\mathbb{R}^{4}\) using the basis
\[\left\{\left(\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right),\left(\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right),\left(\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right),\left(\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right) \cdot\right\}\]
By using Implicit Function Theorem show that the set of \(2 \times 2\) -matrices with the determinant equal to 1 is a 3-dimensional smooth manifold in \(M_{2,2}\).
Deliverable: Word Document 