[Solution] Furnishing a sketch of the curve you are integrating over, integrate the following: a. ∲_C(cos 4z)/(z^3(4z-π))dz counterclockwise
Question:
Furnishing a sketch of the curve you are integrating over, integrate the following:
a.
counterclockwise around the circle |z - 1| = 1/2
c. \(\oint\limits_{C}{\frac{{{e}^{z}}}{\left( z{{e}^{z}}-2iz \right)}dz}\)
where C is the circle |z| = 0.5, counterclockwise.
d. \(\oint\limits_{C}{\left( \frac{4}{z+2i}+\frac{2}{z+4i} \right)dz}\)
clockwise around the circle |z - 1| = 2.5
e. \(\oint\limits_{C}{\frac{{{z}^{3}}{{e}^{z}}}{{{\left( 2z-1 \right)}^{3}}}}\)
counterclockwise around the unit circle.
Deliverable: Word Document 