Let z=f(x,y)={e^{3x+2y}}, find (a) {f_x}(x,y)=3{e^{3x+2y}} (b) {f_y}(x,y)=2{e^{3x+2y}}
Question: Let \(z=f\left( x,y \right)={{e}^{3x+2y}}\), find
(a) \({{f}_{x}}\left( x,y \right)=3{{e}^{3x+2y}}\)
(b) \({{f}_{y}}\left( x,y \right)=2{{e}^{3x+2y}}\)
(c) \({{f}_{xx}}\left( x,y \right)\)
(d) \({{f}_{xy}}\left( x,y \right)\)
(e) \({{f}_{yy}}\left( x,y \right)\)
Price: $2.99
Solution: The solution file consists of 1 page
Type of Deliverable: Word Document
Type of Deliverable: Word Document
