[Solution Library] Suppose that W is a four dimensional vector space over a field F with basis \mathcalS=(v_1, \mathrmv_2, v_3, \mathrmv_4) Show that \mathcalB=(b_1,
Question: Suppose that \(W\) is a four dimensional vector space over a field \(\mathbb{F}\) with basis \(\mathcal{S}=\left(\mathbf{v}_{1}, \mathrm{v}_{2}, \mathbf{v}_{3}, \mathrm{v}_{4}\right)\)
-
Show that \(\mathcal{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right)\) is also a basis for \(W\), where
\[\mathbf{b}_{1}=\mathbf{v}_{1}+2 \mathbf{v}_{3}+3 \mathbf{v}_{4}, \quad \mathbf{b}_{2}=\mathrm{v}_{2}+\mathbf{v}_{4}, \quad \mathbf{b}_{3}=\mathrm{v}_{1}+\mathrm{v}_{3}+2 \mathbf{v}_{4}, \quad \text { and } \quad \mathbf{b}_{4}=-\mathrm{v}_{2}+3 \mathbf{v}_{3}+\mathrm{v}_{4}\] -
Find the change of basis matrix \(P\) from \(\mathcal{S}\) to \(\mathcal{B}\), so that
\[[\mathrm{x}]_{\mathcal{B}}=P[\mathrm{x}]_{\mathcal{S}}, \quad \text { for all } \mathrm{x} \in W\] -
Find the change of basis matrix \(Q\) from \(\mathcal{B}\) to \(\mathcal{S}\), so that
\[[\mathrm{x}]_{\mathcal{S}}=Q[\mathrm{x}]_{\mathcal{B}}, \quad \text { for all } \mathrm{x} \in W\] - Calculate the product PQ.
Price: $2.99
Solution: The downloadable solution consists of 3 pages
Deliverable: Word Document 