[See Solution] Consider the function f: R^3 \rightarrow R given by f(x, y, z)= \begincases(x y z)/(√x^2+y^2+z^2), (x, y, z) ≠q(0,0,0) , 0, (x,
Question: Consider the function \(f: \mathbb{R}^{3} \rightarrow \mathbb{R}\) given by
\[f(x, y, z)= \begin{cases}\frac{x y z}{\sqrt{x^{2}+y^{2}+z^{2}}}, & (x, y, z) \neq(0,0,0) \\ 0, & (x, y, z)=(0,0,0)\end{cases}\]- Is \(f\) continuous at the point \((0,0,0)\) ?
- Find \(\partial f / \partial x(0,0,0), \partial f / \partial y(0,0,0)\) and \(\partial f / \partial z(0,0,0)\).
- Find the directional derivative of \(f\) at \((0,0,0)\) in an arbitrary direction \(\mathrm{v}=\left(v_{1}, v_{2}, v_{3}\right)\).
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 