[All Steps] If
Question: If \(\mathbf{u}=\left( \begin{matrix} {{u}_{1}} \\ {{u}_{2}} \\ {{u}_{3}} \\ \end{matrix} \right)\), \(\mathbf{v}=\left( \begin{matrix} {{v}_{1}} \\ {{v}_{2}} \\ {{v}_{3}} \\ \end{matrix} \right)\) and \(\mathbf{w}=\left( \begin{matrix} {{w}_{1}} \\ {{w}_{2}} \\ {{w}_{3}} \\ \end{matrix} \right)\), show that
\[\mathbf{u}\cdot \left( \mathbf{v}\times \mathbf{w} \right)=\det \left( \begin{matrix} {{u}_{1}} & {{v}_{1}} & {{w}_{1}} \\ {{u}_{2}} & {{v}_{2}} & {{w}_{2}} \\ {{u}_{3}} & {{v}_{3}} & {{w}_{3}} \\ \end{matrix} \right)\]
Deliverable: Word Document 