[All Steps] If


Question: If \(\mathbf{u}=\left( \begin{matrix} {{u}_{1}} \\ {{u}_{2}} \\ {{u}_{3}} \\ \end{matrix} \right)\), \(\mathbf{v}=\left( \begin{matrix} {{v}_{1}} \\ {{v}_{2}} \\ {{v}_{3}} \\ \end{matrix} \right)\) and \(\mathbf{w}=\left( \begin{matrix} {{w}_{1}} \\ {{w}_{2}} \\ {{w}_{3}} \\ \end{matrix} \right)\), show that

\[\mathbf{u}\cdot \left( \mathbf{v}\times \mathbf{w} \right)=\det \left( \begin{matrix} {{u}_{1}} & {{v}_{1}} & {{w}_{1}} \\ {{u}_{2}} & {{v}_{2}} & {{w}_{2}} \\ {{u}_{3}} & {{v}_{3}} & {{w}_{3}} \\ \end{matrix} \right)\]

Price: $2.99
Solution: The downloadable solution consists of 1 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in