(Steps Shown) For the quadratic form Q(x, y, z)=2 x^2+5 y^2+5 z^2+4 x y-4 x z-8 y z find the matrix A so that Q(x, y,
Question: For the quadratic form \(Q(x, y, z)=2 x^{2}+5 y^{2}+5 z^{2}+4 x y-4 x z-8 y z\) find the matrix \(A\) so that
\[Q(x, y, z)=\left(\begin{array}{lll} x & y & z \end{array}\right) A\left(\begin{array}{l} x \\ y \\ z \end{array}\right)\]Find the eigenvalues of \(A\) and its orthogonal diagonalization, \(A=P D P^{t} .\) Find a change of variables so that \(Q(x, y, z)\) can be written as
\[c_{1}\left(x^{\prime}\right)^{2}+c_{2}\left(y^{\prime}\right)^{2}+c_{3}\left(z^{\prime}\right)^{2}\]
Price: $2.99
Solution: The downloadable solution consists of 3 pages
Deliverable: Word Document 