[Step-by-Step] [Profit maximization - III] If the producer’s cost function is C(q)=(q^3)/(3)-7q^2+111q+50 and the demand function is q=100-p where p is
Question: [Profit maximization - III]
If the producer’s cost function is
\[C\left( q \right)=\frac{{{q}^{3}}}{3}-7{{q}^{2}}+111q+50\]and the demand function is
\[q=100-p\]where p is the selling price per unit.
- Write out the total revenue function R in terms of q.
- Write out the profit function \(\Pi \) in terms of q.
- Find the output quantity q* which leads to maximum profit.
- Compute the maximum profit.
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 