[Solution] Evaluate ∫_C F • d r, where F(x, y, z)=z^2 i+x j+y k, where C is given by r(t)= sin t i+ tan t j+t k, 0 ≤q t ≤q
Question: Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\), where \(\mathbf{F}(x, y, z)=z^{2} \mathbf{i}+x \mathbf{j}+y \mathbf{k}\), where \(C\) is given by \(\mathbf{r}(t)=\sin t \mathbf{i}+\tan t \mathbf{j}+t \mathbf{k}, 0 \leq t \leq \frac{\pi}{4}\).
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 