(Step-by-Step) Let Y_1,....,Y_n~ Exp(θ), so f(y)=(1)/(theta)e^-y/θ , y>0,θ >0 Find the distribution of the smallest order statistics
Question: Let \({{Y}_{1}},....,{{Y}_{n}}\sim Exp\left( \theta \right)\), so
\[f\left( y \right)=\frac{1}{\theta }{{e}^{-y/\theta }},\,\,y>0,\theta >0\]- Find the distribution of the smallest order statistics \(Y\left( 1 \right)=\underset{1\le i\le n}{\mathop{\min }}\,{{Y}_{i}}\).
- Calculate \(E\left( Y\left( 1 \right) \right)\) and \(\operatorname{var}\left( Y\left( 1 \right) \right)\)
- Let \({{\hat{\theta }}_{1}}=cY\left( 1 \right)\), for some constant c . Find a value of c such that \(E\left( {{{\hat{\theta }}}_{1}} \right)=\theta \)
- Let \({{\hat{\theta }}_{2}}=\bar{Y}\), where \(\bar{Y}=\frac{1}{n}\left( {{Y}_{1}}+...+{{Y}_{n}} \right)\). Calculate \(E\left( {{{\hat{\theta }}}_{2}} \right)\) and \(\operatorname{var}\left( {{{\hat{\theta }}}_{2}} \right)\)
- The goal is to find the estimator with the minimum mean square error (MSE). Calculate and compare the MSE of the two estimators \({{\hat{\theta }}_{1}}\) and \({{\hat{\theta }}_{2}}\) from parts (c) and (d).
Price: $2.99
Solution: The downloadable solution consists of 3 pages
Deliverable: Word Document 