[Solution] Let V be the space of all lower-triangular 2 * 2 matrices. Consider the linear transformation
Question: Let \(V\) be the space of all lower-triangular \(2 \times 2\) matrices. Consider the linear transformation
\[T\left[\begin{array}{ll} a & 0 \\ b & c \end{array}\right]=a I_{2}+b R+c R^{2},\]where \(R=\left[\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right]\).
-
Find the matrix \(A\) of \(T\) with respect to the basis
\[\mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\}\] - Find a basis for the kernel of \(T\).
- Find a basis for the image of T.
Price: $2.99
Solution: The downloadable solution consists of 3 pages
Deliverable: Word Document 