(Solution Library) Let X be a random variable. Its generating function is defined as G_X(s)=E(s^X) Let X ~ Binomial(n, p). Show that G_X(s)=[ (1-p)+ps ]^n Let Y_1,...,Y_n
Question: Let X be a random variable. Its generating function is defined as
\[{{G}_{X}}\left( s \right)=E\left( {{s}^{X}} \right)\]-
Let X ~ Binomial(n, p). Show that
\[{{G}_{X}}\left( s \right)={{\left[ \left( 1-p \right)+ps \right]}^{n}}\] -
Let \({{Y}_{1}},...,{{Y}_{n}}\) be Bernoulli(p) be independent random variables. Show that
\[{{G}_{{{Y}_{i}}}}\left( s \right)=\left( 1-p \right)+ps\] - Show that the sum of n Bernoulli random variables is a binomial random variable.
Price: $2.99
Solution: The downloadable solution consists of 1 pages
Deliverable: Word Document 