(Step-by-Step) The Fourier sine transform for a function f(x) defined with x ≥q 0 is defined to be \mathcalF_sf(x)=(√2)/(√π) ∫_0^∞
Question: The Fourier sine transform for a function \(f(x)\) defined with \(x \geq 0\) is defined to be
\[\mathcal{F}_{s}\{f(x)\}=\frac{\sqrt{2}}{\sqrt{\pi}} \int_{0}^{\infty} f(x) \sin (k x) d x .\]Show that
\[\mathcal{F}_{S}\left\{e^{-x}\right\}=\frac{\sqrt{2}}{\sqrt{\pi}} \frac{k}{k^{2}+1}\]
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 