[Solution Library] Find the following limits if the limit is a finite number, ∞, or -∞. Otherwise, show the limit does not exist. (7 points each)
Question: Find the following limits if the limit is a finite number, \(\infty\), or \(-\infty\). Otherwise, show the limit does not exist. ( 7 points each)
- \(\lim _{x \rightarrow 2} x^{2} \sqrt{3 x+1}\)
- \(\lim _{x \rightarrow 3^{-}} \frac{2-x}{3-x}\)
- \(\lim _{x \rightarrow 0^{-}} \frac{3 x-|x|}{x}\)
- \(\underset{x\to 0}{\mathop{\lim }}\,\frac{3x-|x|}{x}\)
- \(\lim _{x \rightarrow \infty} \sqrt{x^{2}+7 x}-x\)
- \(\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{x^{2}-2 x}\)
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 