(Solution Library) Differentiate y=(1)/((x^3+4x^2-6x+11))^5 y= tan ^2(cos 2x) x^2-y^2=x^3y y=x^x y=(((x+1)^10)/((9x^3+3x-11))^7)^7/2 y=xln ^2x y=ln (x+ln


Question: Differentiate

  1. \(y=\frac{1}{{{\left( {{x}^{3}}+4{{x}^{2}}-6x+11 \right)}^{5}}}\)
  2. \(y={{\tan }^{2}}\left( \cos 2x \right)\)
  3. \({{x}^{2}}-{{y}^{2}}={{x}^{3}}y\)
  4. \(y={{x}^{x}}\)
  5. \(y={{\left( \frac{{{\left( x+1 \right)}^{10}}}{{{\left( 9{{x}^{3}}+3x-11 \right)}^{7}}} \right)}^{7/2}}\)
  6. \(y=x{{\ln }^{2}}x\)
  7. \(y=\ln \left( x+\ln x \right)\)
  8. \(y={{\left( 3{{x}^{2}}+7 \right)}^{2x}}\)
  9. \(y={{\pi }^{x}}+{{\pi }^{\pi }}+\pi x\)
  10. \(y={{\log }^{5}}|\sin x|\)
  11. \(y={{3}^{\tan x}}\)
  12. \(y=\ln \left( {{x}^{2}}+{{e}^{5x+1}} \right)\)
  13. \(y=\ln \left( {{\log }_{10}}\left( {{x}^{2}}+5 \right) \right)\)
  14. \(y={{\arctan }^{4}}\left( \cos \left( {{x}^{2}} \right) \right)\)

(0) \(y=\frac{\arctan x}{\text{arc}\cot x}\)

(p) \(y=\cos \left( x\sin \arcsin \left( x \right) \right)\)

(r) \(y=x\,\text{arcsec}\left( {{x}^{2}}+2 \right)\)

(s) \(\arcsin y-\arccos x=1\)

Price: $2.99
Solution: The downloadable solution consists of 4 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in