[See Steps] Find the following limits x→ 0lim (sin x)/(e^x)-x-1 t→ 0lim (t-ln (1+2t))/(t^2) n→ ∞ lim (1+1/n)^n x→ ∞ lim x^1/x
Question: Find the following limits
- \(\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin x}{{{e}^{x}}-x-1}\)
- \(\underset{t\to 0}{\mathop{\lim }}\,\frac{t-\ln \left( 1+2t \right)}{{{t}^{2}}}\)
- \(\underset{n\to \infty }{\mathop{\lim }}\,{{\left( 1+\frac{1}{n} \right)}^{n}}\)
- \(\underset{x\to \infty }{\mathop{\lim }}\,{{x}^{\frac{1}{x}}}\)
- \(\underset{x\to 0}{\mathop{\lim }}\,\frac{{{\pi }^{x}}-{{3}^{x}}}{x}\)
- \(\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{1-\cos x}}\)
- \(\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \frac{1}{x}-\frac{1}{\ln \left( x+1 \right)} \right)\)
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 