[See Steps] Determine whether the sequence converges or diverges. If it converges, find the limit. √a_n=(n^3)/(n^3+1) a_n=(3^n+2)/(5^n) a_n=((-1)^n
Question: Determine whether the sequence converges or diverges. If it converges, find the limit.
- \(\sqrt{a_{n}}=\frac{n^{3}}{n^{3}+1}\)
- \(a_{n}=\frac{3^{n+2}}{5^{n}}\)
- \(a_{n}=\frac{(-1)^{n} n^{3}}{n^{3}+2 n^{2}+1}\)
- \(a_{n}=\sqrt{\frac{n+1}{9 n+1}}\)
- \(\left\{\frac{\ln n}{\ln 2 n}\right\}\)
- \(a_{n}=\frac{(\ln n)^{2}}{n}\)
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 