[Step-by-Step] Determine whether the operation defines an inner product. (a) =√u_1 v_1+u_2 v_2+u_3 v_3 where u=[lu_1 , u_2 , u_3], v=[lv_1 ,


Question: Determine whether the operation defines an inner product. (a) \(\langle\mathbf{u}, \mathbf{v}\rangle=\sqrt{u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}}\) where \(\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in \mathbb{R}^{3}\)

(b) \(\langle\mathbf{u}, \mathbf{v}\rangle=A \mathbf{u} \cdot A \mathbf{v}\) for any \(n \times n\) matrix \(A\) over \(\mathbb{R}^{n}\)

(c) \(\langle A, B\rangle=\operatorname{det}(A) \cdot \operatorname{det}(B)\) over \(\mathbb{R}_{2 \times 2}\)

Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in