(Solved) Consider the subspace W=Span;mathcalB of R^3 where \mathcalB=u_1=[l0 , 1 , 2 , 1], u_2=[c4 , 2 , -1 , 0], u_3=[c2 , -4 , 0 , 4] is orthogonal.


Question: Consider the subspace \(W=\operatorname{Span}\{\mathcal{B}\}\) of \(\mathbb{R}^{3}\) where \(\mathcal{B}=\left\{\mathbf{u}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}4 \\ 2 \\ -1 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}2 \\ -4 \\ 0 \\ 4\end{array}\right]\right\}\) is orthogonal. Let

\(\mathbf{y}=\left[\begin{array}{l}5 \\ 1 \\ 0 \\ 3\end{array}\right]\)

  1. Find the orthogonal projection \(\mathbf{y}\) onto \(W\).

Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in