[See Steps] Define A, X, E_1, E_2 and E_3 as follows:
Question: Define \(\mathbf{A}, \mathbf{X}, \mathbf{E}_{1}, \mathbf{E}_{2}\) and \(\mathbf{E}_{3}\) as follows:
\[\mathbf{A}=\left(\begin{array}{rrr} 1 & 3 & -3 \\ -1 & -2 & 3 \\ 1 & 1 & -2 \end{array}\right) \quad \mathbf{X}=\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \quad \mathbf{E}_{1}=\left(\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right) \quad \mathbf{E}_{2}=\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right) \quad \mathbf{E}_{3}=\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right)\]Solve each of the following equations:
\[\begin{array}{lll} \mathbf{A X} & =\mathbf{E}_{1} & \mathbf{A X}=\mathbf{E}_{2} & \mathbf{A X}=\mathbf{E}_{3} \end{array}\]Call the solutions of these equations \(\mathbf{B}_{1}, \mathbf{B}_{2}\) and \(\mathbf{B}_{3}\) respectively. Form a three by three matrix \(\mathrm{B}\) where the first column is \(\mathrm{B}_{1}\), the second column is \(\mathrm{B}_{2}\) and the third column is \(\mathbf{B}_{3} .\) Then, calculate the product \(\mathbf{A B}\)
Deliverable: Word Document 