[Solution] If p is a constant, show that the series 1+∑_n=3^∞ (1)/(n • ln n •[ln (ln n)]^p) converges if p>1, b. diverges if p ≤q


Question: If \(p\) is a constant, show that the series

\[1+\sum_{n=3}^{\infty} \frac{1}{n \cdot \ln n \cdot[\ln (\ln n)]^{p}}\]
  1. converges if \(p>1\), b. diverges if \(p \leq 1 .\) In general, if \(f_{1}(x)=x, f_{n+1}(x)=\ln \left(f_{n}(x)\right)\), and \(n\) takes on the values \(1,2,3, \ldots\), we find that \(f_{2}(x)=\ln x, f_{3}(x)=\ln (\ln x)\), and

so on. If \(f_{n}(a)>1\), then

\[\int_{a}^{\infty} \frac{d x}{f_{1}(x) f_{2}(x) \cdots f_{n}(x)\left(f_{n+1}(x)\right)^{p}}\]


Price: $2.99
Solution: The downloadable solution consists of 1 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in