[Solved] The convergence of ∑_n=1^∞[(-1)^n-1 x^n] / n to ln (1+x) for -1 Show by long division or otherwise that (1)/(1+t)=1-t+t^2-t^3+•s+(-1)^n
Question:
The convergence of \(\sum_{n=1}^{\infty}\left[(-1)^{n-1} x^{n}\right] / n\) to \(\ln (1+x)\) for \(-1
converges to \(\ln (1+x)\) for \(-1
converges if \(p>1\) and diverges if \(p \leq 1\).
\[x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{(-1)^{n} x^{n+1}}{n+1}+\cdots\]
\[\begin{aligned}
\ln (1+x)=& x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \\
&+(-1)^{n} \frac{x^{n+1}}{n+1}+R_{n+1}
\end{aligned}\]
where
\[R_{n+1}=(-1)^{n+1} \int_{0}^{x} \frac{t^{n+1}}{1+t} d t\]
\[\left|R_{n+1}\right| \leq \int_{0}^{x} t^{n+1} d t=\frac{x^{n+2}}{n+2} \text {. }\]
Hint: As \(t\) varies from 0 to \(x\),
\[1+t \geq 1 \text { and } t^{n+1} /(1+t) \leq t^{n+1},\]
and
\[\left.\left|\int_{0}^{x} f(t) d t\right| \leq \int_{0}^{x}|f(t)| d t .\right)\]
Hint: If \(x
Deliverable: Word Document 