Use f^prime(x) and f^prime \prime(x) to draw the graph of f(x)=9-x^2. Use f^prime(x) and f^prime \prime(x)
- Use \(f^{\prime}(x)\) and \(f^{\prime \prime}(x)\) to draw the graph of \(f(x)=9-x^{2}\).
- Use \(f^{\prime}(x)\) and \(f^{\prime \prime}(x)\) to draw the graph of \(f(x)=4 x^{3}-6 x^{2}+5\)
- Draw the graph of \(f(x)=e^{-x^{2}}\). Here \(f^{\prime}(x)=-2 x e^{-x^{2}}\) and \(f^{\prime \prime}(x)=2\left(2 x^{2}-1\right) e^{-x^{2}}\).
- Draw the graph of \(f(x)=\ln \left(x^{2}+1\right)\). Here \(f^{\prime}(x)=\frac{2 x}{x^{2}+1}\) and \(f^{\prime \prime}(x)=\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}}\).
-
Find the maximum and minimum of \(f(x)=4 x^{3}-6 x^{2}+5\) on the intervals (a) \(-1 \leq x \leq 1\),
(b) \(1 \leq x \leq 2\), (c) \(0 \leq x \leq 1\), and (d) \(-1 / 2 \leq x \leq 3 / 2\). (See problem #2 above.) - Find the average value of the function \(f(x)=x^{2}+1\) on the interval \(-1 \leq x \leq 5\).
- Find the average value of the function \(f(x)=\frac{3 x^{2}}{x^{3}+1}\) on the interval \(0 \leq x \leq 2\).
- Find the average value of the function \(f(x)=e^{x}\) on the interval \(0 \leq x \leq \ln 2\).
- Find the area bounded by the graph of \(f(x)=9-x^{2}\) and the \(x\) -axis.
- The graphs of \(f(x)=x^{2}\) and \(g(x)=x\) intersect at the points \((0,0)\) and \((1,1)\). Find the area between the two graphs.
- Approximate \(\sqrt[4]{15.9}\) by using a linear function tangent to the graph of \(f(x)=\sqrt[4]{x}\)
- Find the piecewise linear function of the form
\(f(x)=\left\{\begin{array}{lc}
? & -2 \leq x \leq-1 \\
? & -1 \leq x \leq 0 \\
? & 0 \leq x \leq 1 \\
? & 1 \leq x \leq 2 \\
? & 2 \leq x \leq 3
\end{array}\right.\)
which approximates \(g(x)=\frac{100 x}{\left(x^{2}+1\right)^{2}}\). Find the average value of both \(f(x)\) and \(g(x)\) on the interval \(-2 \leq x \leq 3 .\) Here \(\int \frac{100 x}{\left(x^{2}+1\right)^{2}} d x=-\frac{50}{x^{2}+1}\)
Price: $18.82
Solution: The downloadable solution consists of 13 pages, 582 words and 5 charts.
Deliverable: Word Document
Deliverable: Word Document
