Test for convergence or divergence, absolute or conditional. If the series converges and it is possible
Problem: Test for convergence or divergence, absolute or conditional. If the series converges and it is possible to find the sum, then do so.
\[\sum\limits_{n=1}^{\infty }{\frac{3}{{{2}^{n}}}}\]Problem: Test for convergence or divergence, absolute or conditional. If the series converges and it is possible to find the sum, then do so.
\[\sum\limits_{n=2}^{\infty }{\frac{1}{n\ln n}}\]Problem: Test for convergence or divergence, absolute or conditional. If the series converges and it is possible to find the sum, then do so.
\[\sum\limits_{n=0}^{\infty }{\frac{3{{n}^{2}}+n+1}{{{n}^{4}}+1}}\]Problem: Test for convergence or divergence, absolute or conditional. If the series converges and it is possible to find the sum, then do so.
\[\sum\limits_{n=1}^{\infty }{\frac{n+1}{2n+3}}\]Problem: Test for convergence or divergence, absolute or conditional. If the series converges and it is possible to find the sum, then do so.
\[\sum\limits_{n=1}^{\infty }{\frac{n!}{{{2}^{n}}{{n}^{2}}}}\]Problem: Test for convergence or divergence, absolute or conditional. If the series converges and it is possible to find the sum, then do so.
\[\sum\limits_{n=1}^{\infty }{\frac{{{(-1)}^{n}}}{\sqrt{n}}}\]Problem: Find the open interval of convergence, and test the endpoints for absolute and conditional convergence.
\[\sum\limits_{n=1}^{\infty }{\frac{{{(x+1)}^{n}}}{{{3}^{n}}n}}\]Problem: Find the open interval of convergence, and test the endpoints for absolute and conditional convergence.
\[\sum\limits_{n=1}^{\infty }{\frac{{{(x-4)}^{n+1}}}{{{(n+3)}^{2}}}}\]Problem: Find the Maclaurin series in closed form:
\[f(x)=\frac{1}{{{(x+1)}^{2}}}\]Problem: Find the Maclaurin series in closed form of:
\[f(x)=\ln ({{x}^{2}}+1)\]Problem: Find the critical points and test for relative extrema:
\[f(x,y)=2{{x}^{2}}+2xy+{{y}^{2}}+2x-3\]Problem: Maximize:
\[f(x,y)=\sqrt{6-{{x}^{2}}-{{y}^{2}}}\]Constraint
\[x+y-2=0\]Deliverable: Word Document
