The Empirical Rule and Other Rules in Statistics


Empirical Rule For the Normal Distribution

\[\left\{ \mu -\sigma \le X\le \mu +\sigma \right\}=\left\{ -\sigma \le X-\mu \le \sigma \right\}=\left\{ -1\le \frac{X-\mu }{\sigma }\le 1 \right\}\]

\[\left\{ \mu -\sigma \le X\le \mu +\sigma \right\}=\left\{ -\sigma \le X-\mu \le \sigma \right\}=\left\{ -1\le \frac{X-\mu }{\sigma }\le 1 \right\}=\left\{ -1\le Z\le 1 \right\}\] \[Pr \left( \mu -\sigma \le X\le \mu +\sigma \right)=\Pr \left( -1\le \frac{X-\mu }{\sigma }\le 1 \right)=\Pr \left( -1\le Z\le 1 \right)\] \[=\Pr \left( Z\le 1 \right)-\Pr \left( Z\le -1 \right)\approx 0.\text{841345}-0.\text{158655}\approx 0.\text{682689}\] \[\Pr \left( \mu -2\sigma \le X\le \mu +2\sigma \right)=\Pr \left( -2\le \frac{X-\mu }{\sigma }\le 2 \right)=\Pr \left( -2\le Z\le 2 \right)\] \[=\Pr \left( Z\le 2 \right)-\Pr \left( Z\le -2 \right)\approx 0.\text{977249868}-0.0\text{2275}0\text{132}\approx 0.\text{9544997}\] \[\Pr \left( \mu -3\sigma \le X\le \mu +3\sigma \right)=\Pr \left( -3\le \frac{X-\mu }{\sigma }\le 3 \right)=\Pr \left( -3\le Z\le 3 \right)\] \[=\Pr \left( Z\le 3 \right)-\Pr \left( Z\le -3 \right)\approx 0.\text{99865}0\text{1}0\text{2}-0.00\text{1349898}\approx 0.\text{9973}00\text{2}\]

The Rule of Thumb for the Standard Deviation

\[s\approx \frac{Range}{4}\]

Chebyshev's Rule

\[\Pr \left( \mu -k\sigma \le X\le \mu +k\sigma \right)\ge 1-\frac{1}{{{k}^{2}}}\] \[\Pr \left( \mu -2\sigma \le X\le \mu +2\sigma \right)\ge 1-\frac{1}{{{2}^{2}}}=0.75\]
This tutorial is brought to you courtesy of MyGeekyTutor.com



In case you have any suggestion, please do not hesitate to contact us.

log in

reset password

Back to
log in