# The Empirical Rule and Other Rules in Statistics

### Empirical Rule For the Normal Distribution

$\left\{ \mu -\sigma \le X\le \mu +\sigma \right\}=\left\{ -\sigma \le X-\mu \le \sigma \right\}=\left\{ -1\le \frac{X-\mu }{\sigma }\le 1 \right\}$

$\left\{ \mu -\sigma \le X\le \mu +\sigma \right\}=\left\{ -\sigma \le X-\mu \le \sigma \right\}=\left\{ -1\le \frac{X-\mu }{\sigma }\le 1 \right\}=\left\{ -1\le Z\le 1 \right\}$ $Pr \left( \mu -\sigma \le X\le \mu +\sigma \right)=\Pr \left( -1\le \frac{X-\mu }{\sigma }\le 1 \right)=\Pr \left( -1\le Z\le 1 \right)$ $=\Pr \left( Z\le 1 \right)-\Pr \left( Z\le -1 \right)\approx 0.\text{841345}-0.\text{158655}\approx 0.\text{682689}$ $\Pr \left( \mu -2\sigma \le X\le \mu +2\sigma \right)=\Pr \left( -2\le \frac{X-\mu }{\sigma }\le 2 \right)=\Pr \left( -2\le Z\le 2 \right)$ $=\Pr \left( Z\le 2 \right)-\Pr \left( Z\le -2 \right)\approx 0.\text{977249868}-0.0\text{2275}0\text{132}\approx 0.\text{9544997}$ $\Pr \left( \mu -3\sigma \le X\le \mu +3\sigma \right)=\Pr \left( -3\le \frac{X-\mu }{\sigma }\le 3 \right)=\Pr \left( -3\le Z\le 3 \right)$ $=\Pr \left( Z\le 3 \right)-\Pr \left( Z\le -3 \right)\approx 0.\text{99865}0\text{1}0\text{2}-0.00\text{1349898}\approx 0.\text{9973}00\text{2}$

### The Rule of Thumb for the Standard Deviation

$s\approx \frac{Range}{4}$

### Chebyshev's Rule

$\Pr \left( \mu -k\sigma \le X\le \mu +k\sigma \right)\ge 1-\frac{1}{{{k}^{2}}}$ $\Pr \left( \mu -2\sigma \le X\le \mu +2\sigma \right)\ge 1-\frac{1}{{{2}^{2}}}=0.75$
This tutorial is brought to you courtesy of MyGeekyTutor.com