كل ما تحتاج لمعرفته حول الكثافات والتوزيعات الاحتمالية


الرموز

التمييز بين المتغيرات العشوائية المنفصلة والمستمرة

الخصائص التي يجب أن تتحقق من خلال وظائف الاحتمال والكثافة

مثال 1

\[ f\left( x \right) =\displaystyle \left\{ \begin{array}{cc} \frac{1}{2 } & \text{ for } x=1, \\ \\ \frac{1}{4} & \text{ for } x=2, \\ \\ \frac{1}{8} & \text{ for } x=3, \\ \\ \frac{1}{8} & \text{ for }x=4 \\ \end{array} \right.\]

إجابه:

Let us see, we need to see if conditions (1) and (2) are met. First of all, notice that we have \(f\left( x \right)\ge 0\) for all values {1, 2, 3, 4}, which is the set of all possible values that X can take, since \(f\left( 1 \right)=\frac{1}{2}>\), \(f\left( 2 \right)=\frac{1}{4}>0\), \(f\left( 3 \right)=\frac{1}{8}>0\) and \(f\left( 4 \right)=\frac{1}{8}>0\). Therefore, condition (1) is met.

\[\sum\limits_{i=1}^{4}{f\left( {{x}_{i}} \right)}=f\left( 1 \right)+f\left( 2 \right)+f\left( 3 \right)+f\left( 4 \right)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}=1\]

مثال 2

إجابه:

\[\int\limits_{-\infty }^{\infty }{f\left( x \right)dx}=\int\limits_{0}^{2}{{{x}^{2}}dx}=\left. \frac{{{x}^{3}}}{3} \right|_{0}^{2}=\frac{{{2}^{3}}}{3}-\frac{{{0}^{3}}}{3}=\frac{8}{3}>1\]

أخيرًا , كيف نحسب الاحتمالات باستخدام الكثافات ودوال الاحتمالات؟

\[\Pr \left( X\in D \right)=\int\limits_{D}^{{}}{f\left( x \right)dx}\] \[\Pr \left( X\in \left[ 1,5 \right] \right)=\Pr \left( 1\le X\le 5 \right)=\int\limits_{1}^{5}{f\left( x \right)dx}\] \[\Pr \left( X\in D \right)=\Pr \left( X\in \left\{ {{b}_{1}},{{b}_{2}},...,{{b}_{k}} \right\} \right)=\sum\limits_{j=1}^{k}{f\left( {{b}_{j}} \right)}\]

\[\Pr \left( X\in \left\{ 1,2 \right\} \right)=f\left( 1 \right)+f\left( 2 \right)\]

هذا البرنامج التعليمي مقدم لك من باب المجاملة MyGeekyTutor.com

تسجيل الدخول إلى حسابك

ليس لديك حساب عضوية؟
اشتراك

إعادة تعيين كلمة المرور

ارجع الى
تسجيل دخول

اشتراك

ارجع الى
تسجيل دخول