关于密度和概率分布你需要知道的一切


符号

离散和连续随机变量之间的区别

所有概率函数和密度函数都需要满足的属性

例 1

\[ f\left( x \right) =\displaystyle \left\{ \begin{array}{cc} \frac{1}{2 } & \text{ for } x=1, \\ \\ \frac{1}{4} & \text{ for } x=2, \\ \\ \frac{1}{8} & \text{ for } x=3, \\ \\ \frac{1}{8} & \text{ for }x=4 \\ \end{array} \right.\]

回答:

Let us see, we need to see if conditions (1) and (2) are met. First of all, notice that we have \(f\left( x \right)\ge 0\) for all values {1, 2, 3, 4}, which is the set of all possible values that X can take, since \(f\left( 1 \right)=\frac{1}{2}>\), \(f\left( 2 \right)=\frac{1}{4}>0\), \(f\left( 3 \right)=\frac{1}{8}>0\) and \(f\left( 4 \right)=\frac{1}{8}>0\). Therefore, condition (1) is met.

\[\sum\limits_{i=1}^{4}{f\left( {{x}_{i}} \right)}=f\left( 1 \right)+f\left( 2 \right)+f\left( 3 \right)+f\left( 4 \right)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}=1\]

例2

回答:

\[\int\limits_{-\infty }^{\infty }{f\left( x \right)dx}=\int\limits_{0}^{2}{{{x}^{2}}dx}=\left. \frac{{{x}^{3}}}{3} \right|_{0}^{2}=\frac{{{2}^{3}}}{3}-\frac{{{0}^{3}}}{3}=\frac{8}{3}>1\]

最后,如何用密度和概率函数计算概率?

\[\Pr \left( X\in D \right)=\int\limits_{D}^{{}}{f\left( x \right)dx}\] \[\Pr \left( X\in \left[ 1,5 \right] \right)=\Pr \left( 1\le X\le 5 \right)=\int\limits_{1}^{5}{f\left( x \right)dx}\] \[\Pr \left( X\in D \right)=\Pr \left( X\in \left\{ {{b}_{1}},{{b}_{2}},...,{{b}_{k}} \right\} \right)=\sum\limits_{j=1}^{k}{f\left( {{b}_{j}} \right)}\]

\[\Pr \left( X\in \left\{ 1,2 \right\} \right)=f\left( 1 \right)+f\left( 2 \right)\]

本教程提供给您 MyGeekyTutor.com

登录到您的帐户

没有会员帐户?
报名

重设密码

回到
登录

报名

Back to
登录