Solution) Let A = [ -1 -1 1 , 2 1 -1 , -1 -1 -2 , ], B = [ 1 1 -2 , -2 0 1 , 1 1
Question: Let A = \[\left[ \begin{matrix}
-1 & -1 & 1 \\ 2 & 1 & -1 \\
-1 & -1 & -2 \\
\end{matrix} \right]\], B = \[\left[ \begin{matrix} 1 & 1 & -2 \\ -2 & 0 & 1 \\ 1 & 1 & 3 \\
\end{matrix} \right]\] \[\] and C = \[\left[ \begin{matrix} 2 & 3 \\ -1 & 0 \\ -1 & 1 \\
\end{matrix} \right]\]
1 & 0 & 0 \\
0 & 1 & 1 \\
\end{matrix} \right]\odot \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ \end{matrix} \right]\]
Compute:
(a) AC + BC (It is much faster if you use the distributive law for matrices first.)
(b) 2A - 3A
(c) Perform the given operation for the following zero-one matrices. See the text, page 253 for the definition of the symbol \[\odot \].
\[\left[ \begin{matrix} 1 & 0 & 1 \\1 & 0 & 0 \\
0 & 1 & 1 \\
\end{matrix} \right]\odot \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ \end{matrix} \right]\]
Price: $2.99
Solution: The solution consists of 5 pages
Deliverables: Word Document
Deliverables: Word Document
