(See Solution) Write the following summations in expanded form ∑limits_i=1^53k 1/4∑limits_m=1^4x_m ∑limits_j=4^n(j)/(j+1) ∑limits_i=1^4((O_i-E_i)^2)/(E_i)
Question: Write the following summations in expanded form
- \(\sum\limits_{i=1}^{5}{3k}\)
- \(\frac{1}{4}\sum\limits_{m=1}^{4}{{{x}_{m}}}\)
- \(\sum\limits_{j=4}^{n}{\frac{j}{j+1}}\)
- \(\sum\limits_{i=1}^{4}{\frac{{{\left( {{O}_{i}}-{{E}_{i}} \right)}^{2}}}{{{E}_{i}}}}\)
- \(\sum\limits_{j=3}^{7}{{{3}^{j-1}}}\)
- \(\frac{1}{5}\sum\limits_{k=1}^{5}{{{x}_{k}}}\)
- \[2\sum\limits_{t=2}^{m}{\frac{t-1}{t+1}}\]
- \(\frac{1}{n-1}\sum\limits_{i=1}^{n}{{{\left( {{x}_{i}}-\bar{x} \right)}^{2}}}\)
- \(\sum\limits_{i=1}^{5}{2{{l}^{2}}}\)
- \(\sum\limits_{k=1}^{3}{{{5}^{k+1}}}\)
- \(\sum\limits_{i=1}^{k+1}{\frac{3\left( i-2 \right)}{i+2}}\)
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 