[All Steps] Using convergence tests, determine whether the given series converges. You should clearly state which convergence test you are using. ∑_n=1^∞
Question: Using convergence tests, determine whether the given series converges. You should clearly state which convergence test you are using.
- \(\sum_{n=1}^{\infty} 10^{-n} n^{10}\)
- \(\sum_{n=1}^{\infty} \frac{n^{2}-10}{3^{n}}\)
- \(\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{4}+n^{2}+1}\)
- \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+5}}\)
- \(\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}\)
- \(\sum_{n=1}^{\infty} \frac{7-\sin \left(n^{2}\right)}{n^{2}+1}\)
- \(\sum_{n=1}^{\infty} \frac{e^{-n}+\frac{1}{n}}{n^{3}}\)
- \(\sum_{n=1}^{\infty}\left(1.1+\frac{\sin n}{n}\right)^{n}\)
Price: $2.99
Solution: The downloadable solution consists of 3 pages
Deliverable: Word Document 