[Steps Shown] For T=(d^n)/(d t^n)+f_n-1(t) (d^n-1)/(d t^n-1)+•s+f_2(t) (d^2)/(d t^2)+f_1(t) (d)/(d t)+f_0(t) show that T(ax_1+bx_2)=aTx_1+bTx_2 (a and


Question: For

\[T=\frac{d^{n}}{d t^{n}}+f_{n-1}(t) \frac{d^{n-1}}{d t^{n-1}}+\cdots+f_{2}(t) \frac{d^{2}}{d t^{2}}+f_{1}(t) \frac{d}{d t}+f_{0}(t)\]

show that \(T\left( a{{x}_{1}}+b{{x}_{2}} \right)=aT{{x}_{1}}+bT{{x}_{2}}\) ( a and \(b\) are constants; \(x_{1}\) and \(x_{2}\) are functions of \(t\) ).

Price: $2.99
Solution: The downloadable solution consists of 1 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in