(See Solution) n(d) = 38 X̄_1 = 92 X̄_2 = 95.5 d̄ = -3.5 s_D^2=21 a. Determine the values of t for which the null hypothesis μ _D=μ _1-μ _2=0,
Question:
n(d) = 38
\({{\bar{X}}_{1}}\) = 92
\({{\bar{X}}_{2}}\) = 95.5
\(\bar{d}\) = -3.5
\(s_{D}^{2}=21\)
a. Determine the values of t for which the null hypothesis \({{\mu }_{D}}={{\mu }_{1}}-{{\mu }_{2}}=0\), would be rejected for the alternative hypothesis, \({{\mu }_{D}}={{\mu }_{1}}-{{\mu }_{2}}<0\). Use \(\alpha \) = .10
b. draw appropriate conclusions.
c. find a 90% confidence interval for the mean difference \({{\mu }_{D}}\).
Deliverable: Word Document 